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Abstract

Since the advent of magnetic resonance imaging (MRI) in the 1970s, the field of medi-
cal imaging has witnessed remarkable progress, allowing unprecedented examination of both
structural and functional aspects of the human body. Among these developments, functional
MRI (fMRI) has emerged as a powerful modality for probing neural activity and deciphering
the intricate patterns of connectivity that underlie cognition, perception, and motor control.
Resting-state functional MRI (rsfMRI), in particular, provides a non-invasive means of ob-
serving the brain’s intrinsic functional organization without the need for explicit behavioral
tasks, making it especially valuable for investigating complex pathologies such as ischemic
stroke, where network-level disruptions can critically influence patient prognosis.

This thesis establishes and validates a rigorous cross-species functional connectivity map-
ping framework designed to enhance the translational relevance of preclinical stroke models
for clinical neuroscience. Focusing on canine models of acute ischemic stroke, it leverages
advanced MRI acquisition protocols, comprehensive preprocessing pipelines, and sophisti-
cated computational methods—including manifold alignment algorithms, nonlinear registra-
tion techniques, and graph-theoretic analyses—to characterize stroke-induced alterations in
large-scale brain networks. Critically, this research evaluates how novel hemodynamic and
oxygenation-enhancing interventions, specifically NEH and Sanguinate, modulate these dis-
rupted networks. By quantitatively assessing network reorganization and functional recovery
patterns in canines treated with these agents, the framework identifies conserved features of
connectivity that can be mapped onto human stroke data.

Building on this cross-species alignment, the thesis employs predictive modeling strate-

gies to infer potential therapeutic outcomes in human stroke patients. Machine learning tools
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are used to integrate animal-derived biomarkers, connectivity metrics, and inferred network
topologies into predictive models that estimate patient-specific responses to analogous inter-
ventions. This approach capitalizes on the biophysical parallels between canine and human
cerebrovascular systems, thereby reducing uncertainties associated with direct extrapolation
and improving the reliability of translational insights.

The outcomes of this research reinforce the notion that intrinsic network dynamics, cap-
tured via rsftMRI, offer crucial information about tissue viability, metabolic demands, and
the capacity for functional reorganization following ischemic injury. Moreover, by methodi-
cally bridging the gap between preclinical and clinical domains, the thesis demonstrates how
cross-species connectivity mapping can inform precision medicine approaches in stroke care.
Taken together, these findings not only advance fundamental knowledge of stroke-induced
network perturbations but also pave the way for more targeted, evidence-based clinical inter-
ventions and the refinement of therapeutic strategies aimed at improving patient outcomes

in neurological rehabilitation.
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Chapter 1 Motivation and Thesis

Outline

Over the past several decades, medical imaging techniques have evolved from rudimentary
scanning approaches into refined modalities capable of capturing both the structural and
functional complexity of the human brain [1]. Within this landscape, functional MRI
(fMRI) has emerged as a powerful tool, enabling researchers and clinicians to observe in-
tricate patterns of neural activity and connectivity that underpin cognition, perception, and
motor control [2]. Such capabilities are especially valuable when investigating neurolog-
ical disorders, where disruptions in brain networks can shed light on underlying disease
mechanisms, inform prognoses, and guide the development of more effective therapeutic
interventions.

Ischemic stroke, a leading contributor to mortality and long-term disability worldwide,
highlights the importance of these network-level perspectives. Although current treatments
exist, they often reach only a fraction of patients, emphasizing the urgent need for novel
therapeutic approaches that broaden treatment windows or enhance overall outcomes [3].
In this context, resting-state functional MRI (rsfMRI) provides a powerful platform.
By capturing the brain’s intrinsic functional organization without relying on explicit tasks,
rsfMRI allows researchers to assess large-scale network disruptions—a critical factor in un-
derstanding stroke pathophysiology and recovery potential [4, 5.

To advance beyond isolated findings and toward a translational framework, this thesis in-
tegrates rsfMRI approaches with canine models, whose neurovascular and anatomical simi-

larities to humans offer a more direct path for translating preclinical insights. Additionally, it



explores emerging treatments such as NEH (norepinephrine and hydralazine) and San-
guinate, aiming to establish a robust cross-species connectivity mapping framework
that bridges preclinical results and human clinical applications. Ultimately, this approach

aspires to guide stroke research toward more personalized and impactful therapies.

1.1 Thesis Outline

The chapters that follow are organized to progress from foundational principles to practical

methodologies and, ultimately, clinical translation:

e Chapter 2 - Introduction offers a comprehensive overview of rsfMRI-based func-
tional connectivity in the context of ischemic stroke, elaborates on the rationale for
employing canine models, and introduces the novel therapeutic agents (NEH and San-
guinate). It also consolidates the thesis objectives, research aims, and hypotheses to

provide a cohesive roadmap for the ensuing chapters.

e Chapter 3 - Background delves into the technical and theoretical underpinnings of
MRI, fMRI, and rsfMRI, as well as the mathematical frameworks underpinning func-
tional connectivity analysis. It examines the principles governing the blood-oxygen-
level-dependent (BOLD) signal, the pathophysiology of ischemic stroke at molecular
and network scales, and existing cross-species mapping strategies, setting the stage for

the methodological developments that follow.

e Chapter 4 - Development of a Cross-Species Connectivity Mapping Frame-
work details the experimental protocols, imaging parameters for canine models, pre-
processing pipelines, and computational methods employed to align and compare con-

nectivity patterns between canines and humans.

e Chapter 5 - Results of Cross-Species Connectivity Mapping presents empirical

findings using the developed framework. It characterizes how ischemic stroke and
2



subsequent interventions (NEH and Sanguinate) alter connectivity in canine models
and evaluates how these patterns relate to human data, thereby validating and refining

the cross-species approach.

e Chapter 6 - Predictive Modeling of Human Stroke Outcomes leverages insights
derived from preclinical data and cross-species comparisons to build predictive models
for human stroke responses. By applying machine learning techniques, this chapter
explores how network-level characterizations can forecast therapeutic outcomes and

recovery trajectories, informing personalized treatment strategies.

e Chapter 7 - Conclusions and Recommendations for Future Work synthesizes
the key contributions of this thesis, highlighting advances in cross-species mapping and
predictive modeling. It concludes by suggesting directions for future research, including

methodological refinements and the exploration of additional therapeutic modalities.

In essence, this thesis aims to deepen our understanding of stroke-induced connectivity
alterations, establish a framework for cross-species translational research, and pave the way

for more effective, patient-tailored interventions in stroke care.



Chapter 2 Introduction

This chapter provides the conceptual and contextual foundation for the research presented
in this thesis. It begins by offering a comprehensive overview of resting-state functional
MRI (rsfMRI) and its significance in understanding functional connectivity—particularly
in the context of ischemic stroke, where disruptions in brain networks critically impact
patient recovery and therapeutic effectiveness.

Next, the chapter explains the rationale for employing canine models as a translational
bridge between preclinical studies and human applications. Canines, with their human-like
neurovascular architectures and functional connectivity patterns, present a unique oppor-
tunity to investigate the pathophysiological underpinnings of stroke at a systems level. A
thorough justification for their use will be presented, coupled with a comparison to other
animal models and an assessment of their strengths and limitations.

Further, this chapter introduces the novel therapeutic interventions under investiga-
tion—NEH (norepinephrine and hydralazine) and Sanguinate—which offer the prospect
of improving blood flow, oxygenation, and ultimately connectivity preservation post-stroke.
Their potential mechanisms, relevance to clinical scenarios, and current standing in preclin-
ical research will be delineated.

Bringing these elements together, the chapter then articulates the thesis objectives,
research aims, and hypotheses. By outlining these goals in detail here—rather than
distributing them across multiple chapters—this chapter serves as the primary reference
point for the motivations, questions, and anticipated contributions of the research. It sets
the stage for the technical background, methodological frameworks, and predictive modeling

strategies that will follow in subsequent chapters.



2.1 Resting-State fMRI and its Importance in Stroke Research

Resting-state fMRI provides a non-invasive means of probing the brain’s intrinsic activity.
Without the need for explicit tasks, rsfMRI can reveal temporally correlated fluctuations
in the Blood-Oxygen-Level-Dependent (BOLD) signal, thereby uncovering resting-state
networks (RSNs) that represent fundamental organizational principles of the human brain
[6]. In stroke, these RSNs often exhibit disrupted connectivity, reflecting underlying damage
and compensatory mechanisms at both local and global scales [4, 7].

Identifying and quantifying these connectivity alterations is crucial for understanding
stroke pathophysiology. Beyond assessing the extent of damage, rstMRI-based connectivity
metrics can predict recovery potential, gauge the effectiveness of treatments, and guide
rehabilitation strategies. These capabilities position rsfMRI as an indispensable tool in
stroke research, enabling objective evaluations of interventions like NEH and Sanguinate

that aim to restore or enhance functional network integrity.

2.2 Rationale for Using Canine Models

Animal models are cornerstone tools in biomedical research, providing controlled platforms
for elucidating disease mechanisms and testing candidate therapies before moving into hu-
man trials. While rodent models are widely used due to accessibility and cost-effectiveness,
their lissencephalic brains and differing cerebrovascular dynamics limit their translational
relevance for complex conditions like stroke.

Canine models offer several advantages in this context. Their brain size, degree of
gyrencephaly, and vascular anatomy more closely approximate human conditions [8]. This
anatomical and functional similarity facilitates the analysis of functional connectivity pat-
terns that bear greater resemblance to human RSNs (Figure 4.1). By examining how ischemic

insults and subsequent treatments modify these networks in canines, researchers gain insights



more directly applicable to the human brain.

Moreover, because canines naturally possess a more human-like cortical complexity, their
post-stroke connectivity patterns and responses to interventions can yield richer datasets
for understanding network-level changes. This forms a stronger foundation for cross-species
mapping, enabling the development of algorithms and metrics that more accurately align

canine and human connectivity data.

2.3 Introduction to NEH and Sanguinate Therapies

Current stroke interventions, including thrombolysis and mechanical thrombectomy, remain
constrained by narrow therapeutic windows and patient eligibility criteria [3|. Emerging
treatments target alternative pathways, such as improved perfusion or enhanced oxygen de-
livery to vulnerable brain regions. In this vein, NEH (norepinephrine and hydralazine)
and Sanguinate have been proposed as novel strategies.

NEH therapy modulates systemic hemodynamics to preserve perfusion in ischemic terri-
tories, potentially stabilizing or restoring disrupted connectivity [9]. Sanguinate, an oxygen-
carrying solution, aims to enhance oxygen delivery beyond what standard reperfusion thera-
pies achieve, potentially mitigating the metabolic deficits that compromise network integrity
[10].

Investigating these therapies in canine models via rsfMRI connectivity analyses offers a
clearer picture of their network-level impact. By quantifying how these interventions shift
the functional connectivity landscape—restoring certain RSNs, enhancing coupling between
critical nodes, or modifying global network topology—we can begin to understand their

mechanisms and therapeutic potential in a more targeted manner.



2.4 Thesis Objectives, Research Aims, and Hypotheses

The overarching goal of this thesis is to develop and validate a cross-species functional
connectivity mapping framework that enables robust translation of findings from canine
stroke models to human stroke conditions. Within this broad objective lie several intercon-

nected aims:

1. Characterize Functional Connectivity Alterations in Canine Models: Exam-
ine rsfMRI data from canine models pre- and post-occlusion to identify network-specific
changes in connectivity induced by ischemic stroke. Evaluate how NEH and Sanguinate
therapies influence these patterns, testing the hypothesis that such interventions can

differentially preserve or restore functional connectivity.

2. Develop a Cross-Species Mapping Framework: Establish computational and
mathematical strategies for aligning canine and human connectivity data. This in-
volves implementing advanced registration algorithms and similarity metrics that ac-
commodate anatomical and organizational differences. The hypothesis here is that
despite evolutionary divergences, fundamental aspects of network organization can be

reliably matched across species.

3. Build Predictive Models for Translational Insights: Leverage the cross-species
alignment to construct predictive models that infer potential human therapeutic re-
sponses based on canine data. The hypothesis is that the connectivity changes observed
in canine models following interventions can serve as predictive biomarkers for human

stroke patients, guiding treatment selection and informing prognostic assessments.

Together, these aims and hypotheses form a cohesive framework for advancing transla-
tional stroke research. By thoroughly characterizing connectivity disruptions, establishing

a cross-species bridge, and ultimately linking preclinical insights to clinical predictions, the
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thesis aspires to make meaningful contributions to the field of neuroimaging, stroke therapy,

and precision medicine.

Subsequent chapters will build upon this foundation. Chapter 3 provides the technical
and theoretical background needed for the connectivity analyses and cross-species mapping
methods, while Chapters 4 through 6 detail the methodologies, results, and predictive mod-
eling approaches. Finally, Chapter 7 consolidates these findings, offering reflections on the

progress made and identifying promising directions for future investigations.



Chapter 3 Background

This chapter provides the theoretical and mathematical foundation for understanding the
principles of magnetic resonance imaging (MRI), functional MRI (fMRI), and resting-state
functional MRI (rsfMRI). It begins by introducing the physics of MRI, including key con-
cepts such as nuclear spin, magnetic moment, Boltzmann distribution, Bloch equations, and
the dynamics of nuclear spins under an external magnetic field. The discussion transitions to
the mathematical basis for signal acquisition and reconstruction, followed by an exploration
of the Blood-Oxygen-Level-Dependent (BOLD) signal and the neurovascular mechanisms
that influence its generation. The chapter also introduces the principles of functional con-
nectivity analysis in both task-based and resting-state paradigms, with an emphasis on the
mathematical frameworks used to quantify connectivity. Finally, it explores the pathophys-
iology of ischemic stroke and outlines cross-species mapping frameworks, emphasizing their

relevance and challenges in translational neuroscience.

3.1 Physics and Mathematics of Magnetic Resonance Imaging

(MRI)

Magnetic Resonance Imaging (MRI) is a sophisticated and non-invasive imaging technique
that provides high-resolution images of the internal structures of the body. By exploiting
the intrinsic magnetic properties of atomic nuclei, particularly hydrogen protons abundant in
biological tissues, MRI enables detailed visualization without the use of ionizing radiation.
Understanding the fundamental principles of MRI requires an exploration of nuclear spin
dynamics, magnetic field interactions, signal generation and detection, spatial encoding, and

the mathematical frameworks that govern these phenomena.
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3.1.1 Basic Principles of MRI

At the core of MRI lies the manipulation of nuclear spins within an external magnetic field
and the detection of the resulting signals [11]. This process involves a complex interplay
between quantum mechanics and classical electromagnetism, allowing for the generation of

images based on the magnetic properties of different tissues.

Nuclear Spin and Magnetic Moment

Atomic nuclei are composed of protons and neutrons, each possessing an intrinsic angular
momentum known as spin. This spin is a fundamental quantum mechanical property and
is quantized. In nuclei with an odd number of protons or neutrons, such as hydrogen ('H),
there is a net nuclear spin due to the unpaired nucleon [12, 11, 13].

Associated with the nuclear spin I is a magnetic moment g, which arises because the
spinning charged particle generates a tiny magnetic field, analogous to a small bar magnet.

The magnetic moment is given by:

p = AL (3.1)

where 7 is the gyromagnetic ratio, a constant specific to each type of nucleus (for hydro-
gen, v ~ 42.58 MHz T*I), and £ is the reduced Planck constant. In a macroscopic sample,
the individual magnetic moments are randomly oriented due to thermal motion, resulting in

no net magnetization at the macroscopic level.

Alignment in an External Magnetic Field

When a sample containing nuclei with spin is placed in a strong static external magnetic
field By, typically oriented along the z-axis, the magnetic moments experience a torque that

tends to align them with the field [11, 13]. Quantum mechanics dictates that the component
10



of the nuclear spin along the direction of the magnetic field can only take on certain discrete
values, leading to quantized energy states. For spin—% nuclei like hydrogen, there are two
possible energy states: a lower energy state where the magnetic moment is aligned with B
(parallel) and a higher energy state where it is opposed to B (antiparallel).

The slight excess of nuclei in the lower energy state results in a net macroscopic magne-
tization vector M aligned along By [11]. The population difference between the two energy

states is given by the Boltzmann distribution:

N.
T _ AE/ET
N, e , (3.2)

where Ny and V| are the number of nuclei in the low and high energy states, respectively,
AFE = hwg is the energy difference between the states, k is Boltzmann’s constant, and 7T’
is the absolute temperature. The net magnetization is proportional to the strength of the

external magnetic field and inversely proportional to the temperature:

_ N+2R?By

Mo = ==, (3.3)

where N is the number of spins per unit volume. This relationship underscores the

importance of strong magnetic fields in achieving a detectable signal in MRI.

Larmor Precession and Resonance

The magnetic moments do not align perfectly with By but instead precess around the direc-
tion of the magnetic field due to the torque exerted by Bg. This precessional motion occurs

at the Larmor frequency wy, given by:

wo = 7By. (3.4)

This frequency is specific to the type of nucleus and the strength of the magnetic field.
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For hydrogen nuclei in a 1.5 Tesla field, wgy ~ 63.86 MHz. The precession can be visualized
as the magnetic moments tracing out cones around the direction of By.

Resonance is achieved when an external radiofrequency (RF) magnetic field By, oscil-
lating at the Larmor frequency, is applied perpendicular to Bg. This RF field can induce
transitions between the energy states of the nuclei, effectively tipping the net magnetization
vector M away from alignment with B and into the transverse (xy) plane. The resonance
condition allows for efficient energy transfer and is essential for manipulating the net mag-

netization [13].

RF Excitation and the Rotating Frame

To analyze the effects of the RF field on the magnetization vector, it is convenient to adopt
a rotating frame of reference that rotates at the Larmor frequency wg. In this frame,
the B field appears stationary, simplifying the dynamics of the system. The magnetization
vector M precesses around B at a frequency determined by the magnitude of Bj.

The angle by which M is tipped away from the z-axis, known as the flip angle «, is

given by:

a =BT, (3.5)

where 7 is the duration of the RF pulse. By controlling the amplitude and duration
of the RF pulse, specific flip angles can be achieved (e.g., 90° for maximum transverse

magnetization or 180° for inversion of the magnetization).

Relaxation Processes

After the RF pulse is terminated, the magnetization vector M begins to return to its equi-

librium state along Bg. This relaxation process involves two key mechanisms (Figure 3.1):
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longitudinal relaxation (spin-lattice relaxation) and transverse relaxation (spin-spin

relaxation).
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Figure 3.1: TIllustration of relaxation processes in MRI (a) 77 Relaxation: The recovery of
longitudinal magnetization (M) following an RF pulse, characterized by the time constant
Ty. Different tissues exhibit distinct T} values, contributing to image contrast. (b) 75 and
T3 Relaxation: The decay of transverse magnetization (M) due to spin-spin interactions
(T%) and magnetic field inhomogeneities (T5). The faster decay observed in T35 relaxation
highlights the additional effect of magnetic field inhomogeneities, which can be partially
corrected using spin echo techniques.

Longitudinal Relaxation (77 Relaxation) Longitudinal relaxation describes the recov-
ery of the magnetization component along the z-axis (M) back toward its equilibrium value
M. This process occurs as the spins release energy to their surroundings, or lattice, allowing
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the system to return to thermal equilibrium. The recovery follows an exponential function:

M (t) = Mp(1 — e /1), (3.6)

where 77 is the longitudinal relaxation time constant, characteristic of the tissue and its
molecular environment. Tissues with tightly bound water molecules, such as fat, tend to
have shorter T times, while those with more freely moving water, like cerebrospinal fluid,

have longer 77 times.

Transverse Relaxation (75 Relaxation) Transverse relaxation refers to the decay of the
magnetization component in the transverse plane (Myy) due to dephasing of the individual
spins. This dephasing arises from interactions between neighboring spins, leading to slight

variations in their precessional frequencies. The decay is exponential:

Moy (t) = My (0)e ™"/ T2, (3.7)

where T5 is the transverse relaxation time constant. Like 77, To varies among different

tissues and contributes to image contrast in T2-weighted imaging.

Combined Effects and 75 Relaxation In practice, the observed decay of transverse
magnetization is faster than predicted by T5 relaxation alone due to magnetic field inhomo-
geneities and susceptibility differences within tissues. This combined effect is characterized

by the time constant 75

1 1 1

— ——|— ,
5 Ty Ty

(3.8)

where 7;,}, accounts for dephasing caused by inhomogeneities in the external magnetic
field Bg. Techniques such as spin echo sequences can refocus some of these dephasing effects,

isolating true 75 relaxation.
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Tissue Contrast and Relaxation Times

The differences in 7 and 75 relaxation times among various tissues (Figure 3.2) are fun-
damental to the contrast observed in MRI images. For example, fat has a relatively short
T1 and Ty due to efficient energy exchange and restricted molecular motion, resulting in
bright signals on T1-weighted images. In contrast, fluids like cerebrospinal fluid have long
T7 and T5 times, appearing dark on T1-weighted images and bright on T2-weighted images
[12]. By adjusting imaging parameters such as repetition time (TR) and echo time (TE),

MRI can emphasize these differences to produce images with desired contrast characteristics.
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Figure 3.2: Time courses of magnetization recovery for T1 relaxation (top) and decay for
T2 relaxation (bottom) are shown for different tissue types: fat, blood, and cerebrospinal
fluid (CSF). The T1 plot highlights the differences in longitudinal recovery, with fat show-
ing the fastest relaxation, followed by blood, and then CSF, due to variations in molecular
environments and energy exchange efficiency. The T2 plot demonstrates the differences in
transverse decay rates, where CSF exhibits the slowest decay, indicating a longer T2 time,
while fat decays much more quickly. These distinctions in relaxation times are fundamental
for generating tissue contrast in MRI, with each tissue type contributing unique signal char-
acteristics based on its specific T1 and T2 relaxation properties.

3.1.2 MRI Hardware Components

The successful implementation of MRI relies on specialized hardware designed to generate
precise magnetic fields, transmit and receive RF signals, and process the resulting data. The
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main components include the main magnet, gradient coils, and RF coils.

Main Magnet

The main magnet produces the strong, static magnetic field Bg required to align the nuclear
spins. Most clinical MRI systems use superconducting magnets capable of generating fields
ranging from 1.5 to 7 Tesla [12]. These magnets are cooled to extremely low temperatures
using liquid helium to maintain superconductivity, allowing for high field strengths with
excellent homogeneity across the imaging volume. Field uniformity is critical because vari-
ations in By can lead to image distortions and artifacts. Shim coils and passive shimming

techniques are employed to fine-tune the magnetic field and correct for inhomogeneities.

Gradient Coils

Gradient coils are essential for spatial encoding in MRI. They produce controlled, linear
variations in the magnetic field along the z, y, and z axes, superimposed on the main

magnetic field Bg. The gradients cause the Larmor frequency to become position-dependent:

w(r) =v(By + Gzx + Gyy + G 2), (3.9)

where G, Gy, and G, are the gradient strengths along their respective axes, and r =
(x,y, z) represents position. By manipulating the gradient strengths and durations, spatial
information is encoded into the frequency and phase of the MR signals. Gradient coils
are precisely engineered to produce linear field variations with minimal distortion and are

capable of rapid switching, which is crucial for advanced imaging techniques.

RF Coils

RF coils serve as both transmitters and receivers in MRI:

17



Transmit Coils Transmit coils generate the RF pulses necessary to excite the spins [13].
They are designed to produce a uniform B field over the region of interest to ensure consis-
tent excitation. Body coils, which are integrated into the scanner bore, are commonly used
for whole-body imaging, while specialized coils may be employed for specific anatomical

regions.

Receive Coils Receive coils detect the weak MR signals emitted by the precessing trans-
verse magnetization [13|. Coil sensitivity and geometry significantly affect the signal-to-noise
ratio (SNR). Surface coils are placed close to the area of interest to maximize SNR, while
phased-array coils consist of multiple small coil elements that can improve spatial resolution

and enable advanced techniques like parallel imaging.

3.1.83  Spatial Encoding and K-Space

Spatial encoding allows MRI to reconstruct spatially resolved images from the MR signals
[11]. This is achieved through the application of gradient fields and the collection of data in

the frequency domain, known as k-space.

Slice Selection

To image a specific slice within the body, a gradient field (e.g., G;) is applied along the
z-axis during the RF excitation pulse. This gradient causes the Larmor frequency to vary
linearly with position along z:

w(z) =v(By + G:2). (3.10)

By applying an RF pulse with a frequency bandwidth Aw, only spins within a slice of

thickness Az are excited:
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Aw

Az = .
vG

(3.11)

Using a sinc-shaped RF pulse ensures a rectangular frequency profile, providing precise

slice selection and minimizing excitation of adjacent slices.

Frequency Encoding (Readout Gradient)

After slice selection, spatial encoding within the slice is achieved using frequency and phase
encoding gradients [11]. The frequency encoding gradient (G ) is applied along the x-axis
during signal acquisition. This gradient causes the Larmor frequency to vary with position

along z:

w(z) =v(By + Ggx). (3.12)

As a result, spins at different z-positions precess at different frequencies. The received
signal is a superposition of these frequencies, and applying a Fourier transform allows for

the reconstruction of spatial information along the z-axis.

Phase Encoding

Phase encoding involves applying a gradient (Gy) along the y-axis for a short duration before

signal acquisition. This gradient induces a position-dependent phase shift in the spins:

o(y) = 1GyyAt, (3.13)

where At is the duration of the phase encoding gradient. By incrementally changing the
amplitude of Gy across multiple repetitions (called phase encoding steps), different phase
encodings are obtained, enabling spatial resolution along the y-axis. Collecting data with

varying phase encoding gradients fills k-space line by line [11].
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K-Space and Image Reconstruction

K-space is a conceptual space where each point corresponds to a specific spatial frequency

component of the image [11, 13]. The coordinates in k-space are defined by:

t

The MR signal S(kz, ky) acquired during readout is related to the spatial distribution of

magnetization p(z,y) by the Fourier transform:

00 00 )
S(ka, ky) = / / p(z, y)e~ 27 b thyy) gy (3.15)
-0 J =00

Reconstructing the image involves performing an inverse Fourier transform of the k-space

data:

00 00 )
ple,y) = / / S kg, ky) e 2 Fattkyy) g, ke, (3.16)
—00 J =00

The sampling density and trajectory in k-space influence the resolution and quality of

the reconstructed image.

K-Space Sampling Strategies

Different strategies are used to fill k-space (Figure 3.3), each affecting acquisition time, image

quality, and sensitivity to artifacts:

Cartesian Sampling In Cartesian sampling, k-space is filled line by line in a rectilinear
fashion by sequentially varying the phase encoding gradient. This method is straightfor-
ward and compatible with fast Fourier transform algorithms but can be sensitive to motion

artifacts.
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Radial and Spiral Sampling Radial sampling acquires data along spokes radiating from
the center of k-space, while spiral sampling traverses k-space in a spiral trajectory. These
methods offer robustness against motion artifacts and can provide faster acquisition times

but require more complex reconstruction algorithms.

Cartesian Sampling Radial Sampling
ky ky

Spiral Sampling
ky

ka

Figure 3.3: Illustration of different k-space sampling strategies. Top left: Cartesian sam-
pling, where k-space is filled line by line in a rectilinear manner. This method is compatible
with fast Fourier transform algorithms and provides straightforward reconstruction but is
sensitive to motion artifacts. Top right: Radial sampling, which acquires data along spokes
radiating from the center of k-space. This approach is more robust to motion artifacts and
can provide fast acquisitions but requires more complex reconstruction. Bottom: Spiral
sampling, where data is acquired in a spiral trajectory. Spiral sampling is efficient in acquisi-
tion time and is less sensitive to motion, but its reconstruction is computationally intensive
due to the non-Cartesian path.
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3.1.4 Pulse Sequences and Image Contrast

Pulse sequences define the timing and application of RF pulses and gradient fields, controlling
the contrast and quality of the MRI images [11, 13]. Key parameters influencing image

contrast include repetition time (TR), echo time (TE), and flip angle ().

Repetition Time (TR) and Echo Time (TE)

The repetition time TR is the time interval between successive excitation pulses. It de-
termines the extent of longitudinal relaxation that occurs between excitations, influencing
T1 weighting. A short TR minimizes T1 relaxation differences, while a long TR allows for
greater recovery of M,.

The echo time TE is the time between the excitation pulse and the peak of the echo
signal. TE affects the amount of transverse relaxation that influences the signal, thereby
controlling T2 or T2* weighting. A short TE reduces T2 decay effects, while a long TE
accentuates differences in T2 relaxation times among tissues.

By adjusting TR and TE, different tissue contrasts can be achieved:

e T1-Weighted Imaging: Short TR and short TE emphasize differences in T1 relax-

ation times, making tissues with short T1 appear bright.

e T2-Weighted Imaging: Long TR and long TE emphasize differences in T2 relaxation

times, highlighting tissues with long T2.

e Proton Density Imaging: Long TR and short TE minimize relaxation effects, em-

phasizing differences in proton density.
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Flip Angle

The flip angle a determines the extent to which the net magnetization is tipped into the
transverse plane during excitation. In gradient echo sequences, varying the flip angle allows
for control over image contrast and can reduce acquisition times. Smaller flip angles reduce

saturation effects and allow for shorter TR, enabling faster imaging.

Spin Echo and Gradient Echo Sequences

Spin Echo Sequences Spin echo sequences (Figure 3.4) use a 90° excitation pulse followed
by a 180° refocusing pulse. The 180° pulse inverts the dephased spins, refocusing them at
time TE to form an echo [11]|. This sequence compensates for dephasing due to magnetic field
inhomogeneities and is sensitive to true T2 relaxation. Spin echo sequences are considered
the gold standard for image contrast but have longer acquisition times compared to gradient

echo sequences.

Gradient Echo Sequences Gradient echo sequences (Figure 3.4) use variable flip angles
and gradient reversals to refocus spins without the need for a 180° pulse [11]. These sequences
are faster and more versatile but are sensitive to T2* effects due to field inhomogeneities.
They are useful in applications where rapid imaging is required, such as dynamic studies and

functional MRI.
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Figure 3.4: Comparison of Spin Echo and Gradient Echo Pulse Sequences. The
spin echo sequence (top) uses a 90° excitation pulse followed by a 180° refocusing pulse to
correct for magnetic field inhomogeneities, producing an echo at time Tg. In contrast, the
gradient echo sequence (bottom) uses a variable flip angle excitation pulse («) and gradient
reversals to achieve faster imaging, with sensitivity to T2* effects. Spin echo sequences offer
accurate T2 contrast, while gradient echo sequences are suited for rapid imaging but are
more susceptible to artifacts.

Advanced Pulse Sequences
Advanced imaging techniques utilize specialized pulse sequences to achieve specific imaging

goals:

Inversion Recovery Inversion recovery sequences begin with an inversion pulse (typically

180°) to invert the net magnetization. By selecting an appropriate inversion time (TT), tissues
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with specific T1 values can be nulled, enhancing contrast between different tissues. For
example, fluid-attenuated inversion recovery (FLAIR) suppresses signals from cerebrospinal

fluid to better visualize lesions in the brain.

Fast Spin Echo (Turbo Spin Echo) Fast spin echo sequences acquire multiple echoes
following a single excitation by using a train of 180° refocusing pulses. This approach
significantly reduces scan time while maintaining T2 weighting. It is widely used in clinical

imaging due to its efficiency and image quality.

Echo Planar Imaging (EPI) Echo planar imaging enables the rapid acquisition of an
entire image following a single excitation pulse by traversing k-space in a single shot. EPI is
critical for applications that require high temporal resolution, such as functional MRI and
diffusion imaging. However, it is sensitive to magnetic field inhomogeneities and may suffer

from geometric distortions.

3.1.5 Applications and Clinical Imaging

MRI’s versatility and superior soft tissue contrast make it invaluable in numerous clinical

and research applications.

Brain Imaging

High-resolution structural imaging of the brain is essential for diagnosing neurological con-
ditions. T1-weighted imaging provides detailed anatomical structures, useful for detecting
tumors, malformations, and assessing brain development. T2-weighted imaging highlights
fluid-filled spaces and pathological changes such as edema, inflammation, and demyelination,

aiding in the diagnosis of multiple sclerosis, stroke, and infections.
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Functional MRI (fMRI) Functional MRI maps brain activity by detecting changes in
blood oxygenation levels, leveraging the BOLD contrast mechanism discussed earlier. It
allows for the non-invasive study of brain function, connectivity, and neural networks, pro-

viding insights into cognitive processes and neurological disorders.

Cardiac Imaging

MRI offers a comprehensive, non-invasive assessment of cardiac structure and function. Cine
MRI captures dynamic images of the beating heart, enabling evaluation of ventricular func-
tion, wall motion, and valvular function [12]|. Perfusion imaging assesses myocardial blood
flow using contrast agents, aiding in the detection of ischemia. Late gadolinium enhancement
identifies areas of myocardial infarction or fibrosis by highlighting regions where contrast

agent accumulates due to damaged myocardium.

Musculoskeletal Imaging

MRI provides excellent soft tissue contrast for evaluating muscles, ligaments, tendons, and
cartilage. Fat-suppressed imaging enhances visualization of edema, inflammation, and tu-
mors by suppressing signals from fatty tissues. Cartilage imaging assesses cartilage integrity
and degeneration in joint diseases like osteoarthritis, using techniques such as T2 mapping

and delayed gadolinium-enhanced MRI of cartilage (dAGEMRIC) [12].

3.1.6 Bloch Equations and Spin Dynamics

The Bloch equations provide a semiclassical description of nuclear magnetic resonance
phenomena, combining quantum mechanical principles with classical electromagnetic theory.

For a magnetization vector M = (M, My, M) under an external magnetic field B, the
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equations take the form:

My
dM "
M, —My

When considering both static (Bg) and time-varying (Bq(¢)) fields, the total field be-

comes:

~

B(t) = Bok + B (t)[cos(wt)i + sin(wt)J]. (3.18)

Rotating Frame Analysis

The transformation to the rotating frame introduces a coordinate system (2,7, 2’) rotating

at angular frequency w about the z-axis [11, 13]. The transformation matrix R(t) is given

by:
cos(wt) sin(wt) 0

R(t) = | —sin(wt) cos(wt) 0] - (3.19)
0 0o 1

The effective field in this frame becomes:
w [ y)
Beg= | By — ? k+ Byi'. (3.20)
Solutions and Applications
For specific cases, analytical solutions exist [11]. During free precession with no RF field:
Moy (t) = My (0)e "t/ T2e=1vABot (3.21)

M. (t) = My — [My — M.(0)]e"/T (3.22)

For more complex scenarios involving time-varying gradients G(t¢), the Bloch equations

27



become:

T M x [By+ G(1) -x + By (1) ~ R(M) (3.23)

where R(M) represents the relaxation terms [11].

These equations form the basis for advanced pulse sequence design, including;:

Composite pulse optimization

Adiabatic pulse design

Magnetization preparation schemes

Multi-component relaxation analysis

Numerical solutions typically employ methods such as the Runge-Kutta algorithm or
matrix exponential approaches for accurate trajectory prediction, particularly important in

quantitative imaging applications.

3.1.7  Summary

Magnetic Resonance Imaging combines principles of physics, mathematics, and engineering
to produce detailed images of the body’s internal structures. By manipulating nuclear spins
with precisely timed magnetic fields and RF pulses, MRI offers unparalleled flexibility and
contrast in medical imaging. A deep understanding of the underlying physics and mathemat-
ical models is crucial for advancing MRI technology, improving image quality, and expanding
its clinical applications. This foundation sets the stage for exploring advanced topics such
as functional MRI and the study of resting-state functional connectivity, which continue to

enhance our understanding of human physiology and disease.
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3.2 Functional MRI and Resting-State fMRI

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive neuroimaging technique
that enables researchers and clinicians to observe brain activity by detecting changes as-
sociated with blood flow. It leverages the principle that cerebral blood flow and neuronal
activation are coupled; when a region of the brain is active, blood flow to that area increases.
Resting-State fMRI (rsfMRI) extends this capability by examining the brain’s functional or-
ganization during rest, revealing intrinsic connectivity networks without the need for explicit

tasks or stimuli.

3.2.1 Principles of fMRI

The fundamental principle underlying fMRI is the detection of changes in blood oxygenation
levels that occur in response to neural activity. This mechanism is known as the Blood Oxy-
genation Level Dependent (BOLD) contrast [14, 15]. Active neurons consume oxygen and
glucose, leading to localized changes in the concentration of oxygenated and deoxygenated
hemoglobin. Oxygenated hemoglobin is diamagnetic, while deoxygenated hemoglobin is
paramagnetic, affecting the local magnetic field and thus the MR signal [16, 17].

During neuronal activation, the increase in cerebral blood flow (CBF) to a region is
typically greater than the increase in oxygen consumption [15]. This results in a net decrease
in the concentration of deoxygenated hemoglobin (dHb) in that area. Since dHb causes local
magnetic field inhomogeneities that shorten the effective transverse relaxation time 77, a
decrease in dHb leads to an increased T3 and, consequently, an increase in the MR signal
in T2*-weighted images. This signal change forms the basis of the BOLD contrast used in
fMRI [15, 6, 2|.

Mathematically, the change in MR signal AS due to a change in the effective transverse

relaxation rate AR5 can be approximated by:
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% ~e TEAR, 1~ _TE.AR3, (3.24)

where S is the baseline signal intensity, TE is the echo time, and AR5 represents the
change in 1/T5. The negative sign indicates that an increase in AR5 (more dHb) leads to a
signal decrease. However, during activation, AR5 decreases due to reduced dHb, leading to
a signal [18].

The BOLD signal is inherently complex, influenced by multiple physiological processes,
including the cerebral metabolic rate of oxygen consumption (CMRO9), cerebral blood vol-
ume (CBV), and cerebral blood flow (CBF) [18]. Accurately modeling the BOLD signal

requires consideration of these factors and their interplay.

3.2.2  Hemodynamic Response Function (HRF)

The relationship between neuronal activation and the BOLD signal is characterized by the
Hemodynamic Response Function (HRF), which describes how the BOLD signal evolves
over time following a brief neural stimulus [18, 17]. The HRF in fMRI because allows
prediction of the expected BOLD signal resulting from a given pattern of neuronal activity.
The typical HRF exhibits a characteristic shape with several distinct phases (Figure
3.5). Immediately following neuronal activation, there may be a small initial dip in the
BOLD signal, thought to reflect the rapid increase in oxygen consumption before the vascular
response. This is followed by the main positive peak, occurring around 4 to 8 seconds after
stimulus onset, reflecting the influx of oxygenated blood that exceeds metabolic demands.
After the peak, the signal returns to baseline but often undershoots, resulting in a post-
stimulus undershoot that can last several seconds. This undershoot may be due to delayed
normalization of cerebral blood volume or continued elevated metabolic rates.
Mathematically, the HRF can be modeled using a combination of gamma functions,

capturing the delay, rise, and fall of the BOLD response:
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where A; are amplitude scaling factors, a; are shape parameters, b; are time constants
controlling the width, and d; are delays for the peak and undershoot components, respectively
[17]. This model allows flexibility in fitting the observed BOLD response across different

brain regions and subjects.

Hemodynamic Response Function (HRF)
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Figure 3.5: Hemodynamic Response Function (HRF'). The plot illustrates the BOLD
signal evolution after a brief neural stimulus. Key phases include an initial dip due to in-
creased oxygen consumption, a positive peak (4-8 seconds) reflecting an influx of oxygenated
blood, and a post-stimulus undershoot related to delayed cerebral blood volume adjustments.

3.2.3 fMRI Data Analysis

Analyzing fMRI data involves several complex steps aimed at extracting meaningful infor-
mation about brain function from the raw MR signals [18|. The process begins with pre-
processing, which includes correcting for differences in slice acquisition timing, realigning

images to compensate for subject motion, normalizing brain images to a standard anatomical
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space, smoothing to enhance signal-to-noise ratio, and filtering to remove physiological noise
and drifts.

After preprocessing, statistical analysis is performed to identify brain regions where
the BOLD signal correlates with the experimental design or task. The most commonly
used framework for this analysis is the General Linear Model (GLM), which models the

observed BOLD time series as a linear combination of predictors (regressors) and noise:

Y = X3 +e¢, (3.26)

where Y is the vector of observed fMRI signals over time, X is the design matrix con-
taining convolved regressors (e.g., the HRF convolved with stimulus timing), 3 are the
parameters to be estimated (reflecting the magnitude of activation), and € is the residual
error term [18].

Parameter estimation is typically achieved using ordinary least squares, yielding estimates
B that minimize the sum of squared errors. Hypothesis testing involves specifying contrast
vectors to test specific effects of interest, and statistical significance is assessed using t-tests or
F-tests. To account for the multiple comparisons inherent in voxel-wise analysis, corrections
such as the Bonferroni correction or False Discovery Rate (FDR) are applied to control the

family-wise error rate.

3.2.4 Resting-State fMRI (rsfMRI)

Resting-State fMRI focuses on spontaneous fluctuations in the BOLD signal that occur in
the absence of explicit tasks or stimuli [18, 17, 19]. These low-frequency fluctuations (less
than 0.1 Hz) are thought to reflect the brain’s intrinsic functional architecture, revealing
networks of regions that are functionally connected [18]. Unlike task-based fMRI, rsfMRI
examines the temporal coherence of BOLD signals between different brain areas during rest.

Functional connectivity in rsfMRI is typically assessed by computing the temporal cor-

32



relation between the BOLD time series of different regions [17, 20, 21, 22]. For example, the
Pearson correlation coefficient between time series x;(¢) and x;(t) from regions i and j is

given by:

o Salel) ) () ~ %)
1) —
VEL (it) — 22/ S L (1) — 252

where 7; and Z; are the mean signals over time for regions ¢ and j, respectively. High

, (3.27)

correlation coefficients suggest functional connectivity, implying that these regions are part

of the same resting-state network (RSN).

Independent Component Analysis

One common approach to identify RSNs is Independent Component Analysis (ICA), a
powerful data-driven method used to decompose the fMRI data into statistically independent
spatial components [18]. ICA is especially valuable in rsfMRI analysis due to its ability to
identify brain networks without any prior knowledge or model of their spatial locations,
making it a flexible method for discovering novel functional networks.

In ICA, the observed rsfMRI data matrix X, which typically has dimensions V' xT" (where
V represents the number of voxels and T represents the number of time points), is assumed

to be a linear mixture of unknown independent components:

X = AS, (3.28)

where:

e A is the mixing matrix, of size 7' x N, containing the time courses associated with

each independent component.

e S is a matrix of size N x V, containing the independent components, which are
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spatial maps indicating the areas of the brain with correlated BOLD signal fluctuations.

The goal of ICA is to determine both A and S based solely on the observations in X. This
is done under the assumption that the components in S are statistically independent from
each other. Independence is typically measured by non-Gaussianity, with the assumption
that the source signals are non-Gaussian and independent.

To achieve this, iterative algorithms, such as FastICA, are often employed. FastICA is
an efficient method for finding independent components by maximizing a measure of non-

Gaussianity, such as negentropy, which can be expressed as:

J(y) = H(YGaussian) — H (), (3.29)

where H(y) represents the entropy of the random variable y, and H (YGaussian) 1S the
entropy of a Gaussian variable with the same variance as y. By maximizing negentropy,
ICA effectively finds a representation of the data where the components are maximally
independent and non-Gaussian.

Another approach used by ICA algorithms involves minimizing the mutual information

I(y1,vy2,...,yn) of the components, where mutual information is defined as:
N
I(yr o, -oyn) = Y H(yi) — H(y), (3.30)
=1

with H(y) representing the joint entropy of all components. In practical terms, minimiz-
ing mutual information implies that the joint distribution of the components becomes as close
as possible to the product of their marginal distributions, achieving statistical independence.
Once ICA decomposes the data into its constituent components, each independent com-
ponent represents a distinct RSN, which includes areas of the brain that exhibit temporally

correlated activity. Examples of RSNs that are commonly identified using ICA include:

e The Default Mode Network (DMN), which is active during rest and involved in
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processes such as mind-wandering and self-referential thought.

e The Sensorimotor Network, which encompasses regions involved in somatosensory

and motor functions, including the primary motor cortex and somatosensory cortex.

e The Visual Network, located primarily in the occipital cortex, responsible for visual

processing.

e The Attentional Networks, such as the dorsal attention network, involved in vol-
untary attention control, and the ventral attention network, associated with detecting

salient stimuli.

The output from ICA (Figure 3.6) consists of a set of spatial maps (S) and their associated
time courses (A). The spatial maps highlight voxels whose activity contributes to a specific
RSN, while the corresponding time courses reflect the temporal fluctuation of activity within

those networks.

35



DMN Visual Sensorimotor  Somatosensory

Figure 3.6: Example ICA Spatial Maps. The figure shows example spatial maps
derived from ICA applied to resting-state fMRI data. Each spatial map represents a spe-
cific Resting-State Network (RSN), highlighting regions of the brain where voxel activity is
temporally correlated, contributing to distinct functional networks. Left to Right: The
Default Mode Network (DMN), which is involved in introspective tasks and deactivates
during externally-focused activities; the Visual Network, which is primarily responsible for
visual processing; the Sensorimotor Network, involved in coordinating motor activities
and processing somatosensory information; and the Somatosensory Network, related to
sensory information processing. Each RSN is characterized by specific patterns of connec-
tivity, captured through ICA decomposition, where the red regions indicate areas of higher
activity correlation within that network. The figure also includes a sagittal view to demon-
strate the approximate slices used in generating these spatial maps.

The advantages of ICA are not only its ability to identify functionally coherent networks
but also its capacity to separate artifacts from true neural signals. For instance, ICA can
identify and isolate components related to physiological noise (e.g., cardiac or respiratory
fluctuations) or head motion, thereby improving the quality of rsfMRI data analysis. This
denoising capability makes ICA an essential tool in preprocessing pipelines for resting-state
rstMRI.

Another mathematical perspective on ICA is its ability to solve the "blind source sep-
aration" problem, where the task is to recover the original independent sources from their
mixtures without knowing the nature of the mixing process. This aspect is particularly pow-
erful in rsfMRI data analysis, as the sources (neural networks) are not directly measurable,
and only their mixed signals (observed voxel intensities) are available.

ICA provides a robust and flexible methodology for identifying RSNs by maximizing

36



statistical independence between components, allowing for unbiased identification of brain
networks. This independence-based uncovers consistent functional networks across individ-
uals, populations, and even species, thereby playing a central role in understanding the

intrinsic connectivity and functional architecture of the human brain.

3.2.5 Neurological Underpinnings of fMRI and rsfMRI

The BOLD signal arises from a complex interplay between neuronal activity, metabolism,
and hemodynamics [15, 17, 18]. Understanding the neurophysiological basis of the BOLD

signal is essential for accurate interpretation of fMRI data.

Neurovascular Coupling and the Neurovascular Unit

Neurovascular coupling refers to the relationship between neuronal activity and subsequent
changes in cerebral blood flow [18, 17, 23, 24]. This process is mediated by the neurovas-
cular unit (Figure 3.7), a functional ensemble comprising neurons, astrocytes, vascular
endothelial cells, pericytes, and smooth muscle cells [24, 25]. The neurovascular unit orches-
trates the regulation of cerebral blood flow in response to neuronal activity.

When neurons become active, they release neurotransmitters such as glutamate, which
propagate neural signals and activate receptors on adjacent astrocytes [23]. Astrocytes re-
spond by increasing intracellular calcium levels, leading to the release of vasoactive sub-
stances like prostaglandins and nitric oxide (NO) [23]. These substances act on the smooth
muscle cells of arterioles and capillaries, causing vasodilation and increasing blood flow to
the active region.

Pericytes, located along capillaries, also play a role in regulating blood flow at the mi-
crovascular level. Endothelial cells contribute by releasing factors that influence vessel diam-
eter and permeability [23, 26, 27]. The integrated response of the neurovascular unit ensures

a timely and localized increase in blood flow, matching the metabolic demands of active
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neurons.
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[lustration of the neurovascular unit, highlighting the interactions between neu-
rons, astrocytes, endothelial cells, pericytes, and smooth muscle cells in regulating cerebral

blood flow. The illustration is adapted directly from Zoppo et al |28].

Disruption in the function of the the neurovascular unit can affect neurovascular cou-
pling and, consequently, the BOLD signal [17, 2]. In pathological conditions such as stroke,

neurodegenerative diseases, or aging, alterations in neurovascular unit components can lead

to impaired blood flow regulation.

Neuroenergetics

Neuronal activity increases the demand for ATP, which is primarily produced through ox-
idative metabolism of glucose [23]. The mismatch between oxygen delivery (due to increased
CBF) and oxygen consumption leads to changes in the Oxygen Extraction Fraction (OEF),
defined as:
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(3.31)

where CMRO9 is the cerebral metabolic rate of oxygen consumption, CBF is the cerebral
blood flow, and [O9] is the arterial oxygen concentration. Changes in OEF contribute to the

dynamics of the BOLD signal [18, 29, 30].

Spontaneous Neural Activity

Resting-state BOLD fluctuations are thought to reflect spontaneous neuronal activity that is
organized into coherent patterns rather than random noise |18, 17]. These intrinsic activities
may play roles in maintaining synaptic connections, consolidating memories, and prepar-
ing the brain for responsive action. The consistent observation of RSNs across individuals

suggests that these networks are fundamental to brain function.

3.2.6 Mathematical Models of Neurovascular Coupling

To quantitatively relate neuronal activity to the observed BOLD signal, biophysical models
have been developed. One such model is the Balloon Model (Figure 3.8), which describes
the dynamics of blood flow, volume, and deoxyhemoglobin content in response to neuronal
activation [31, 18].

The Balloon Model comprises differential equations governing the changes in normalized

venous blood volume v(¢) and deoxyhemoglobin content ¢(t):
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where f(t) is the normalized cerebral blood flow, 7 is the mean transit time of blood
through the venous compartment, « is Grubb’s exponent relating blood volume and flow,
and Ejy is the resting oxygen extraction fraction [17, 18].

The BOLD signal change AS can then be modeled as a function of v(t) and ¢(t):

AS q(t)

5~ Vo |1 - () + ( - ﬁ) k(1 v<t>>} , (3.34)

where 1/ is the resting blood volume fraction, Sy is the baseline signal, and k1, ko, k3 are

constants dependent on the magnetic field strength and imaging parameters.

A. Early view of the BOLD response
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Figure 3.8: Balloon Model of the BOLD Response. (A) An early view of the BOLD
response represents the chain of events from stimulus onset, through neural activation and
hemodynamic response, to the resultant BOLD signal. This approach simplifies the un-
derstanding of how vascular dynamics influence the BOLD signal. (B) The Balloon model
further details the relationship between cerebral blood flow (CBF), cerebral blood volume
(CBV), and deoxyhemoglobin content. This model accounts for the passive expansion of
venous blood volume in response to changes in CBF and helps to understand how these
changes produce the BOLD signal during and after neuronal activation. The schematic em-
phasizes the physiological basis of the BOLD signal, as well as the temporal dynamics of its
components. Adapted from Buxton (2012) [31].

40



Another approach is Dynamic Causal Modeling (DCM), which integrates neuronal
and hemodynamic models to infer hidden neuronal states from the BOLD signal [18, 17, 32].

In DCM, the neuronal state vector z(t) evolves according to:

— Az(t) + Cu(t), (3.35)

where A represents intrinsic connections between brain regions, C represents the influence
of external inputs u(t), and the hemodynamic model links z(t) to the predicted BOLD

response [18].

3.2.7 Challenges and Considerations in fMRI and rsfMRI

Interpreting fMRI data requires careful consideration of several factors that can influence
the BOLD signal. Physiological noise from cardiac and respiratory cycles can introduce
artifacts, which can be mitigated by recording physiological signals during scanning and
applying retrospective correction algorithms 32, 18|. Additionally, scanner drift and thermal
noise necessitate appropriate temporal filtering and preprocessing steps.

Spatial and temporal resolution are critical considerations. Higher spatial resolution
improves localization of activation but may reduce the signal-to-noise ratio and increase
scan times. Temporal resolution affects the ability to detect rapid changes in neural activity
and the accurate estimation of functional connectivity.

Reproducibility and reliability are paramount, especially for clinical applications and
longitudinal studies. Ensuring standardized imaging protocols, consistent preprocessing

pipelines, and rigorous statistical analyses enhances the validity of findings.
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3.2.8  Future Directions and Advanced Techniques

Advancements in fMRI technology and analysis methods continue to expand its capabili-
ties. Multimodal imaging approaches, combining fMRI with electroencephalography (EEG)
or magnetoencephalography (MEG), offer complementary spatial and temporal resolution,
providing a more comprehensive understanding of brain function |2, 33, 34].

High-field MRI scanners (7 Tesla and above) provide increased signal-to-noise ratio and
enhanced sensitivity to susceptibility effects, allowing for finer spatial resolution and im-
proved detection of subtle functional changes [34]. However, they also present challenges
such as increased susceptibility artifacts and safety considerations related to higher mag-
netic fields.

Machine learning and artificial intelligence techniques are increasingly applied to fMRI
data for pattern recognition, classification, and predictive modeling [34]. These approaches
can handle high-dimensional data and uncover complex patterns that may not be apparent

through traditional analysis methods.

3.2.9  Summary

Functional MRI and resting-state fMRI have revolutionized our ability to study the human
brain in vivo. By leveraging the BOLD contrast mechanism and understanding the role
of the neurovascular unit in neurovascular coupling, these techniques provide insights into
the neural correlates of cognitive processes, functional connectivity, and brain organization.
A comprehensive grasp of the physiological and mathematical foundations of the BOLD
signal is essential for designing experiments, analyzing data, and interpreting results. As
technology advances and computational methods evolve, fMRI will continue to be a vital

tool in neuroscience research and clinical applications such as in stroke management.
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3.3 Pathophysiology of Ischemic Stroke

Acute ischemic stroke is a devastating neurological event resulting from the sudden inter-
ruption of blood flow to a region of the brain [1, 35]. This interruption deprives neurons
and glial cells of essential nutrients and oxygen, leading to a complex cascade of cellular and
molecular events that culminate in neuronal injury and death. Understanding the intricate
pathophysiological mechanisms underlying ischemic stroke is crucial for developing effective

therapeutic strategies and improving patient outcomes.

3.3.1 Cellular and Molecular Mechanisms

The onset of ischemia initiates a series of interconnected pathological processes (Figure 3.9),
each contributing to the progression of brain injury. The primary event is the reduction or
cessation of cerebral blood flow due to arterial occlusion, typically caused by a thrombus or

embolus [36, 37]. This leads to an immediate energy crisis within affected brain regions.
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Figure 3.9: Neurovascular Interactions During Ischemic Stroke. The top portion
depicts platelet and endothelium activation, contributing to thromboinflammation through
the release of mediators like MMP-9, MMP-2, and IL-1, and through leukocyte adhesion
via molecules such as P-selectin, ICAM-1, and VCAM-1. Activated platelets and immune
cells adhere to the endothelium, releasing pro-inflammatory factors and promoting thrombus
formation. The bottom portion illustrates the CNS inflammatory response, including
microglia, astrocytes, and neurons. Microglia release TNF, IL-15, and ROS in response to
DAMPS and ATP, contributing to neuronal damage, while reactive astrocytes exacerbate
inflammation through cytokine production. These processes underlie the progression of
stroke-induced injury and highlight key targets for therapeutic intervention. Adapted from
Garcia-Bonilla et al [38].

Energy Failure and Ionic Imbalance

Neurons are highly dependent on aerobic metabolism for ATP production. The abrupt loss
of oxygen and glucose supply halts oxidative phosphorylation within mitochondria, rapidly
depleting ATP stores [36]. The energy failure impairs the function of ATP-dependent ion
pumps, particularly the Na ™ /K "-ATPase, which is essential for maintaining ionic gradients
across the neuronal membrane |1, 36].

As the Na' /K"-ATPase pump fails, there is an accumulation of intracellular sodium
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(Nat) and calcium (Ca?T) ions, while potassium (K*) ions leak out of the cell. This
ionic imbalance leads to the depolarization of neurons and the opening of voltage-gated
calcium channels, further increasing intracellular Ca2t levels [36, 39, 40]. The disrupted ionic

homeostasis sets the stage for excitotoxicity and initiates detrimental enzymatic processes.

Excitotoxicity

Depolarized neurons release excessive amounts of excitatory neurotransmitters, predomi-
nantly glutamate, into the synaptic cleft. The elevated extracellular glutamate overstimu-
lates ionotropic glutamate receptors, such as NMDA and AMPA receptors, on postsynaptic
neurons. Activation of these receptors facilitates a massive influx of Ca?t and Nat ions into
the cell [40, 28].

The surge in intracellular Ca2t concentration activates various calcium-dependent en-
zymes, including proteases like calpains, phospholipases, and endonucleases. Calpains de-
grade cytoskeletal proteins, compromising neuronal structural integrity [40]. Phospholipases
break down membrane phospholipids, leading to the generation of arachidonic acid and
subsequent production of pro-inflammatory eicosanoids. Endonucleases cause DNA frag-

mentation, which can trigger apoptotic pathways.

Oxidative and Nitrosative Stress

The mitochondrial dysfunction resulting from energy failure and calcium overload leads to
the generation of reactive oxygen species (ROS). Impaired electron transport chain function
causes leakage of electrons, which react with molecular oxygen to form superoxide radicals
(O5). Superoxide can be converted to hydrogen peroxide (H2Og2) by superoxide dismutase
(SOD), and further to hydroxyl radicals (OH-) via the Fenton reaction in the presence of
iron [40]. These ROS are highly reactive and can damage lipids, proteins, and DNA.

Concurrently, nitric oxide synthase (NOS) enzymes produce nitric oxide (NO). Under
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ischemic conditions, inducible NOS (iNOS) and neuronal NOS (nNOS) become overactive,
leading to excessive NO production [40, 28]. NO reacts with superoxide to form peroxyni-
trite (ONOO™), a potent reactive nitrogen species (RNS) that exacerbates cellular damage

through nitration of tyrosine residues in proteins and lipid peroxidation.

Inflammatory Response

The inflammatory response (Figures 3.9 & 3.10) is a critical component of ischemic stroke
pathophysiology. Within minutes of ischemia onset, resident microglia in the brain are
activated [35]. These cells transition from a resting to an activated state, adopting amoeboid
morphology and producing pro-inflammatory cytokines such as TNF-«, IL-15, and IL-6.
Astrocytes also become reactive, contributing to the release of inflammatory mediators and
upregulation of adhesion molecules [41, 40].

These cytokines promote the expression of adhesion molecules like ICAM-1 and VCAM-
1 on endothelial cells of the cerebral vasculature [40]. This facilitates the recruitment and
transmigration of peripheral immune cells, including neutrophils, monocytes, and lympho-

cytes, into the brain parenchyma [40, 28|.
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Figure 3.10: Temporal Progression of the Inflammatory Response in Ischemic
Stroke. The coordinated innate and adaptive immune responses following an ischemic
stroke are shown, detailing key cellular players and their interactions over time. Innate
Immunity (Left): Neutrophils (N1) are among the first responders, releasing reactive
oxygen species (ROS), matrix metalloproteinases (MMPs), and nitric oxide (NO) to clear
damaged cells and debris. Microglia and macrophages are activated, with M1 macrophages
contributing to inflammation, and M2 macrophages promoting tissue repair and angiogenesis.
Microglia phagocytose dying neurons and interact with macrophages and other immune cells.
Adaptive Immunity (Right): As inflammation evolves, the adaptive immune system
becomes involved, with regulatory T cells (Tregs) releasing anti-inflammatory cytokines like
IL-10 to resolve inflammation and support tissue repair. The progression of inflammation,
from acute tissue clearance by innate cells to adaptive immune-mediated resolution and
tissue repair, spans from the acute phase (days) to the chronic phase (weeks). Adapted from
Garcia-Bonilla et al [38].

Neutrophils are among the first infiltrating cells and contribute to secondary injury by
releasing proteases, ROS, and pro-inflammatory cytokines. Monocytes differentiate into
macrophages within the brain and can adopt either pro-inflammatory (M1) or anti-inflammatory

(M2) phenotypes, influencing the balance between further injury and repair processes.
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Blood-Brain Barrier Disruption

The blood-brain barrier (BBB) is a selective barrier formed by endothelial cells, tight junc-
tion proteins, astrocyte end-feet, and pericytes [40]. Ischemia leads to the disruption of the
BBB through several mechanisms. Inflammatory cytokines and oxidative stress upregulate
matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9 [40|. MMPs degrade
extracellular matrix components and tight junction proteins like occludin and claudins, in-
creasing BBB permeability.

The compromised BBB allows plasma proteins, such as fibrinogen and albumin, and
immune cells to enter the brain parenchyma. This extravasation contributes to vasogenic
edema, increasing intracranial pressure and potentially leading to herniation [40, 41, 28|. Ad-
ditionally, the influx of peripheral immune cells amplifies the inflammatory response within

the brain.

Cell Death Pathways

Cell death in ischemic stroke occurs through a continuum of mechanisms (Figure 3.11),
including necrosis, apoptosis, autophagy, and necroptosis. The mode of cell death is in-
fluenced by the severity and duration of ischemia and varies across different brain regions
[28, 40, 42, 43].

In the ischemic core, where blood flow reduction is most severe, neurons rapidly undergo
necrosis due to profound energy failure. Necrotic cells exhibit swelling, loss of membrane
integrity, and uncontrolled release of intracellular contents, which can provoke further in-
flammation.

In the penumbra, neurons experience less severe ischemia and may die through apoptosis,
a regulated form of cell death [40]. Apoptosis involves caspase activation, chromatin conden-

sation, DNA fragmentation, and the formation of apoptotic bodies, which are phagocytosed
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without triggering inflammation.

Autophagy, a process of cellular self-digestion, is upregulated in response to stress and
can have dual roles. While moderate autophagy may promote cell survival by removing
damaged organelles, excessive autophagy can lead to autophagic cell death.

Necroptosis is a programmed form of necrosis mediated by receptor-interacting protein ki-
nases RIPK1 and RIPK3, and the mixed lineage kinase domain-like protein (MLKL) [40, 38].
Necroptosis shares features with both necrosis and apoptosis and contributes to inflammation

due to the release of cellular contents.
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Figure 3.11: Molecular Mechanisms of Cell Death in Ischemic Stroke. Key molec-
ular players involved in different cell death pathways, including necrosis, apoptosis, and
necroptosis, are illustrated. The extrinsic apoptotic pathway is initiated by binding of
Fas ligand (FasL) to the CD95-Fas receptor, forming the death-inducing signaling complex
(DISC) and leading to caspase-8 activation. Caspase-8 subsequently cleaves and activates
downstream caspases such as caspase-3, resulting in DNA fragmentation by CAD (Caspase-
Activated DNase). The intrinsic apoptotic pathway is characterized by mitochondrial
release of cytochrome ¢ (Cyt ¢), which binds Apaf-1, forming the apoptosome that activates
caspase-9 and downstream caspase-3. Necroptosis, mediated by receptor-interacting proteins
(RIP1 and RIP3), is also illustrated, emphasizing its interplay with apoptosis and its contri-
bution to inflammation through necrotic release of cellular contents. The crosstalk between
these pathways highlights the complexity of cell death mechanisms in ischemic conditions.
Adapted from Yang et al [40].
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3.3.2  Temporal Dynamics of Ischemic Injury

The progression of ischemic injury unfolds over time (Figures 3.9 & 3.10), with distinct
phases characterized by specific pathophysiological processes [35, 44, 28, 37, 45]. Understand-
ing these temporal dynamics is essential for identifying therapeutic windows and tailoring

interventions.

Hyperacute Phase (Minutes to Hours)

In the hyperacute phase, immediate energy failure leads to rapid neuronal depolarization
and the onset of excitotoxicity. The accumulation of extracellular glutamate and calcium
overload initiates destructive enzymatic cascades. Early oxidative and nitrosative stress
exacerbate mitochondrial dysfunction and energy deficits.

Microglial activation begins within minutes, and the release of pro-inflammatory cy-
tokines sets the foundation for the inflammatory response. BBB disruption starts due to the

activation of MMPs and degradation of tight junction proteins.

Acute Phase (Hours to Days)

The acute phase is marked by the amplification of inflammatory responses. Peripheral
immune cells infiltrate the brain, with neutrophils arriving first. These cells release enzymes
and ROS, contributing to secondary injury and BBB disruption. Vasogenic edema peaks
during this phase, increasing intracranial pressure and risking herniation.

Apoptotic cell death becomes prominent in the penumbra. Therapeutic interventions
during this phase aim to reduce inflammation, protect the BBB, and prevent further neuronal

loss.
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Subacute Phase (Days to Weeks)

In the subacute phase, there is a transition from injury to repair. Inflammation begins
to subside as anti-inflammatory cytokines like IL-10 and TGF-§ are produced [41, 46].
Macrophages shift towards an M2 phenotype, promoting tissue repair and angiogenesis.

Neurogenesis and angiogenesis are stimulated by growth factors such as VEGF, BDNF,
and NGF [40]. Endothelial cells proliferate, forming new blood vessels that restore perfu-
sion. Neural progenitor cells migrate towards the ischemic area, potentially contributing to
neuronal replacement.

Astrocytes proliferate and form a glial scar around the infarcted tissue. While this scar
contains the injury and prevents the spread of damage, it can also inhibit axonal regeneration

due to the secretion of inhibitory molecules.

Chronic Phase (Weeks to Months)

The chronic phase involves remodeling and plasticity as the brain attempts to recover func-
tion. Surviving neurons undergo synaptic plasticity, forming new connections to compensate
for lost pathways. Dendritic sprouting and changes in neurotransmitter receptor expression
facilitate neural network reorganization.

Persistent low-grade inflammation may continue, potentially impacting long-term recov-
ery. Remote effects, such as diaschisis, can occur where regions distant from the infarct
exhibit altered function due to disrupted connectivity.

Rehabilitation efforts are critical during this phase to enhance neuroplasticity. Thera-
peutic interventions focus on facilitating functional recovery through physical therapy, occu-

pational therapy, and cognitive rehabilitation.
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3.3.8  Collateral Circulation and Penumbral Salvage

The extent of ischemic injury is influenced by the adequacy of collateral circulation. Col-
lateral vessels provide alternative routes for blood flow when primary arteries are occluded,
supplying the penumbral regions with oxygen and nutrients.

Robust collateral circulation can prolong the survival of at-risk tissue, extending the
therapeutic window for interventions such as thrombolysis and mechanical thrombectomy.
Factors affecting collateral flow include individual vascular anatomy, blood pressure, and
systemic vascular health.

Efforts to enhance collateral flow, such as pharmacological vasodilation or induced hyper-
tension, are under investigation. Imaging techniques like perfusion MRI and CT angiography

help assess collateral status and guide treatment decisions.

3.3.4  Molecular Targets for Therapeutic Intervention

Advances in understanding the molecular mechanisms of ischemic stroke have identified

numerous therapeutic targets aimed at mitigating damage and promoting recovery.

Modulating Excitotoxicity

Therapies targeting excitotoxicity focus on reducing glutamate release or blocking glutamate
receptors [37, 46]. While NMDA receptor antagonists showed promise in preclinical studies,
clinical trials have been limited by side effects and lack of efficacy, highlighting the challenge

of targeting excitatory neurotransmission without disrupting normal brain function.

Reducing Oxidative Stress

Antioxidant therapies aim to neutralize ROS and protect cellular components from oxida-

tive damage. Agents like edaravone, a free radical scavenger, have demonstrated efficacy
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in reducing infarct size and improving outcomes in some patient populations. Enhancing
endogenous antioxidant defenses through upregulation of enzymes like SOD and catalase is

another strategy under exploration.

Anti-inflammatory Approaches

Modulating the inflammatory response offers potential for limiting secondary injury. Strate-
gies include inhibiting pro-inflammatory cytokines, blocking leukocyte adhesion and infiltra-
tion, and promoting anti-inflammatory mediators. Selective inhibition of MMPs to preserve
BBB integrity is also a therapeutic avenue. Balancing immune modulation to avoid impairing

host defenses is a critical consideration.

Promoting Neuroprotection and Repair

Neuroprotective agents aim to inhibit apoptotic pathways, support mitochondrial function,
and enhance cell survival signaling. Growth factors such as erythropoietin and granulocyte
colony-stimulating factor have neuroprotective properties and may promote neurogenesis and
angiogenesis.

Cell-based therapies using stem cells or progenitor cells offer potential for replacing dam-
aged neurons and supporting repair processes. These approaches are in early stages of re-
search, with challenges including cell delivery, survival, and integration into existing neural

networks.

Enhancing Neuroplasticity

Rehabilitation strategies that harness neuroplasticity are essential for functional recovery
[41]. Pharmacological agents that modulate neurotransmitter systems, such as selective
serotonin reuptake inhibitors (SSRIs), may enhance plasticity and improve outcomes when

combined with rehabilitation therapies.
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Non-invasive brain stimulation techniques, like transcranial magnetic stimulation (TMS)
and transcranial direct current stimulation (tDCS), are being investigated for their ability

to modulate cortical excitability and promote reorganization of neural circuits [37, 44].

3.3.5  Summary

Ischemic stroke is a multifactorial event involving a cascade of cellular and molecular mech-
anisms that evolve over time. The initial energy failure triggers processes of excitotoxicity,
oxidative and nitrosative stress, and inflammation, leading to neuronal death through var-
ious pathways. The temporal dynamics of injury highlight critical periods for intervention,
emphasizing the importance of timely therapeutic strategies.

Understanding the complex interplay of these mechanisms offers opportunities for de-
veloping targeted treatments. While significant challenges remain in translating preclinical
findings into effective clinical therapies, ongoing research continues to explore novel ap-
proaches aimed at reducing injury and enhancing recovery. Advances in imaging, molecular
biology, and neuroscience hold promise for improving outcomes and reducing the burden of

stroke on individuals and society.

3.4 Cross-Species Mapping Frameworks

Understanding the human brain remains one of the greatest challenges in neuroscience. Given
ethical and practical limitations in studying the human brain directly, researchers often rely
on animal models to investigate neural mechanisms. Cross-species mapping frameworks are
essential for translating findings from animal studies to humans, enabling the study of brain
function, evolution, and disease. These frameworks help bridge the gap between what we
learn from different species and how that information can be applied to understand human
brain function, particularly in the context of neurological disorders and treatments.

This section provides a comprehensive discussion on the frameworks for cross-species
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mapping in neuroscience, setting the stage for the development of the proposed functional
connectivity mapping approach in subsequent chapters. By exploring the integration of
structural and functional connectivity data, advanced computational tools, and network
science techniques, we aim to provide a foundational understanding for the cross-species

methodology adopted in this thesis.

3.4.1 Introduction to Cross-Species Mapping

Cross-species studies in neuroscience play an important role in understanding fundamental
mechanisms underlying brain function. These studies enable researchers to translate findings
from animal models to humans, thus providing valuable insights into human neurobiology.
However, challenges arise in aligning structural and functional brain data across species
due to interspecies variability in brain size, anatomy, and functional organization [47]. To
address these challenges, frameworks integrating both structural and functional connectivity
have been developed, allowing researchers to identify conserved and divergent features across

species.

3.4.2  Structural Connectivity Mapping

Structural connectivity mapping relies on diffusion MRI (dMRI) and tract-tracing methods
to investigate the white matter architecture of the brain. Rogier Mars et al. have proposed
a framework (Figure 3.12) for structural connectivity mapping that leverages connectivity
fingerprints, which are derived from diffusion data to characterize inter-regional anatomical
connections [48|. This framework uses dimensionality reduction techniques such as multidi-
mensional scaling (MDS) to visualize cross-species similarities in connectivity patterns, thus
facilitating comparisons between the structural connectomes of different species.

To mathematically describe structural connectivity, let us define the connectivity matrix

C € R™ " where n is the number of regions of interest (ROIs) in the brain. Each element
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C;; represents the strength of the structural connection between regions ¢ and j. Diffusion
MRI provides estimates of these connection strengths by modeling the diffusion of water
molecules along white matter tracts, often using a tensor-based approach. The diffusion

tensor D is a symmetric positive-definite matrix that can be diagonalized as:
D = EAE”, (3.36)

where E is the matrix of eigenvectors and A is the diagonal matrix of eigenvalues. The
principal eigenvector indicates the primary direction of diffusion, which is assumed to align
with the orientation of white matter fibers.

Connectivity fingerprints offer a compact representation of the connectivity profile of
each brain region, highlighting unique and conserved anatomical features. Mathematically,
let f; € R"™ represent the connectivity fingerprint of region ¢, which is defined as the i-th row
of the connectivity matrix C'. Dimensionality reduction techniques like MDS and principal
component analysis (PCA) are often used to transform the high-dimensional connectivity
data into a low-dimensional space that captures the most important features of the connec-
tome [48]. Specifically, given the connectivity matrix C', PCA seeks to find a set of orthogonal

components that maximize the variance in the data by solving the eigenvalue problem:
cT'cv = v, (3.37)

where A represents the eigenvalues and v represents the principal components. This allows for
the quantitative assessment of cross-species similarities, helping identify homologous brain
regions across species.

A key strength of structural connectivity approaches is their ability to provide a detailed
mapping of anatomical pathways, which is particularly useful for identifying conserved white

matter tracts. However, these methods also have limitations, such as the inability to de-
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termine the directionality of connections and the potential for inaccuracies in regions with
crossing fibers. Moreover, structural connectivity alone may not fully capture the dynamic
nature of brain networks, necessitating the integration of functional connectivity data for a

more complete understanding.

a. Tracts common across species b. Building a connectivity blueprint
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Figure 3.12: Cross-Species Structural Connectivity Mapping Framework by Mars
et al. (2018). (a) Tracts Common Across Species: Structural tracts conserved be-
tween humans and non-human primates, visualized across multiple brain slices. These tracts
serve as the foundation for comparing connectivity patterns between species. (b) Building
a Connectivity Blueprint: The blueprint is constructed by computing vertex-wise con-
nectivity profiles for each region in the brain, followed by a matrix multiplication with a tract
map, resulting in a summary representation of connectivity patterns across the cortex. (c)
Blueprints: Comparative visualization of connectivity blueprints for human and macaque
cortex, emphasizing both left and right cortical tracts as well as commissural pathways.
(d) KL-Divergence as a Comparative Metric: The Kullback-Leibler (KL) divergence
is employed as a metric to quantify differences in connectivity blueprints between species,
highlighting both similarities and unique features of each species’ structural organization.
Adapted from Mars et al 2018 [48].
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3.4.3  Functional Connectivity Mapping

Resting-state fMRI has emerged as a powerful tool for investigating functional connectivity
in both humans and animal models. In cross-species research, rstMRI allows for the identifi-
cation of conserved functional networks, such as the Default Mode Network (DMN), across
species [47]. Graph theory approaches are commonly employed to analyze functional connec-
tivity, wherein nodes represent brain regions and edges represent the statistical dependencies
between them.

To represent functional connectivity mathematically, let us define a graph G = (V, E),
where V' is the set of nodes representing brain regions, and E is the set of edges representing
the functional connections between these regions. The functional connectivity between two
regions ¢ and j can be quantified by the Pearson correlation coefficient r;; (eq. 3.27) of their
respective time series x;(t) and x;(t) .

Key metrics used in graph theory include the clustering coefficient, C;, which measures
the tendency of nodes to form tightly connected clusters. The clustering coefficient for node

7 is defined as:
262'

Ci= ki(ki — 1)

(3.38)

where e; is the number of edges between the neighbors of node ¢, and k; is the degree of
node i (i.e., the number of edges connected to node 7).
Global efficiency, Eg,p, quantifies the efficiency of information transfer across the entire

network and is defined as:
1 1

Ejop=——"— —_— (3.39)
glob _ )
n(n—1) et di;

where d;; is the shortest path length between nodes ¢ and j, and n is the total number of

nodes in the graph.

Modularity, @, assesses the degree to which the network can be subdivided into distinct
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modules and is defined as:

1 kik
Q = % Z |:AZJ - 2—771]} 5(Ci,Cj), (340)

where A;; is the adjacency matrix representing the presence of an edge between nodes 7 and
J, ki and k; are the degrees of nodes i and j, m is the total number of edges in the network,
and d(c;, ¢;) is an indicator function that equals 1 if nodes i and j belong to the same module
and 0 otherwise.

These metrics are useful for identifying homologous networks across species and for under-
standing the impact of neurological conditions, such as stroke, on brain network organization.

Despite its utility, functional connectivity mapping faces several challenges when applied
across species. Anatomical differences between species lead to variability in network topology,
making it difficult to directly compare functional networks. Moreover, differences in the
temporal resolution of rsfMRI data across species can introduce discrepancies in connectivity

metrics, necessitating the development of advanced alignment techniques.

3.4.4  Multimodal Integration Approaches

To address the limitations of using either structural or functional connectivity alone, mul-
timodal integration approaches have been developed. These approaches combine structural
and functional data to provide a more comprehensive understanding of brain connectivity.
Joint embedding techniques, for example, allow for the simultaneous analysis of multiple
modalities, facilitating the identification of cross-species correspondences [47].

Canonical Correlation Analysis (CCA) is another powerful tool for cross-species align-
ment. By maximizing the correlation between linear combinations of structural and func-
tional connectivity features, CCA can identify shared patterns that may not be apparent

from either modality alone. Integrating molecular and genetic data with connectivity mea-
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sures further enhances the robustness of cross-species mapping, providing insights into the

biological underpinnings of network organization.

3.4.5  Advanced Computational and Mathematical Frameworks

Advanced computational and mathematical tools are essential for tackling the complexity of
cross-species brain mapping. Manifold alignment techniques, for example, provide a means
of aligning brain connectivity data in a shared low-dimensional space. Procrustes analysis
is commonly used for linear alignment, while non-linear manifold alignment techniques are
better suited for capturing complex, non-linear relationships between species [48|.

Optimal transport theory offers a mathematically rigorous framework for understanding
cross-species differences in network topology. By modeling the problem of aligning brain
networks as a transportation problem, optimal transport provides a principled way to match
brain regions between species while minimizing the cost of alignment. Mathematically, given
two probability distributions P and () representing connectivity patterns in two species, the

goal is to find a transport plan 7 that minimizes the Wasserstein distance:

P = inf d d 41
WP = it /X () (3.41)

where I'( P, Q) is the set of all possible transport plans and d(z,y) is the cost function asso-
ciated with transporting mass from z to y. This approach has proven useful for quantifying
interspecies differences in network organization and for identifying conserved features of brain

architecture.

3.4.6 Network Science Tools for Cross-Species Mapping

Network science provides tools for comparing brain networks across species. Graph the-

ory metrics have been extensively used to identify conserved topological features, such as
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small-world properties and community structure, in the connectomes of various species [47].
Network control theory (NCT) further extends these analyses by modeling the brain as a
dynamical system and identifying control points that can influence brain state transitions
[47].

To represent the brain as a dynamical system, let us define the brain state vector x(t) €
R", where n is the number of brain regions, and x(t) represents the activity level of each

region at time t. The evolution of the brain state can be modeled using a linear system:

dx(t)
5 = Ax(t) + Bu(t), (3.42)

where A € R™"*" is the structural connectivity matrix that defines the interactions between
brain regions, B € R"*™ is the input matrix that defines how external inputs affect the
brain, and u(t) € R™ is the control input vector.

The goal of network control theory is to determine the control input u(¢) that drives the
brain from an initial state x(0) to a desired target state x y within a certain time frame. The

minimum energy control input can be found by solving the following optimization problem:

T
Iulllér)l /0 ul (t)u(t) dt, (3.43)

subject to the constraint given by the state equation above. The solution to this problem
provides the optimal control strategy for transitioning between brain states, which is crucial
for understanding how perturbations can influence whole-brain dynamics.

One important concept in NCT is the controllability Gramian W,, which is defined as:
T T
W, = / At BBT A dt. (3.44)
0

The Gramian W, provides a measure of how controllable the system is from a given set of
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inputs. If W, is full rank, then the system is said to be completely controllable, meaning that
it is possible to drive the system from any initial state to any final state using an appropriate
control input.

By identifying key control points, NCT can predict how perturbations to specific regions
will impact whole-brain dynamics, providing insights into potential therapeutic targets for
modulating brain activity across species. For example, brain regions with high controllability
are those that can efficiently drive the system to different states, making them important

targets for interventions aimed at altering brain function.

3.4.7 Validation and Evaluation Techniques

The validation of cross-species mapping frameworks is a crucial step in ensuring their relia-
bility and translational value. Statistical methods, such as cross-validation and permutation
testing, are commonly used to assess the quality of the mappings. Biological validation,
including the use of conserved networks like the DMN, further ensures that the identified

correspondences are meaningful and not artifacts of the alignment process.

3.4.8 Future Directions and Challenges

Future work in cross-species brain mapping should address the variability in brain size,
anatomy, and function across species. FExpanding current frameworks to include multi-
scale data, such as cellular resolution and gene expression, could enhance the robustness
of cross-species comparisons. Additionally, machine learning approaches hold great promise
for improving mapping accuracy by leveraging large-scale datasets and identifying complex,

non-linear relationships between species [47].
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3.5 Chapter Summary

Chapter 3 has established a comprehensive foundation for understanding the principles and
challenges of cross-species connectivity mapping in the context of ischemic stroke. We began
with an exploration of MRI fundamentals, the neurovascular mechanisms underlying func-
tional MRI, and the key pathophysiological processes involved in stroke. This background
is crucial for interpreting connectivity changes that occur during different stages of ischemic
injury, and it guides the methodological approaches used in cross-species analysis.

The chapter also reviewed existing cross-species mapping frameworks, particularly the
structural connectivity approaches developed by Rogier Mars and colleagues. These methods,
along with advanced tools such as graph theory metrics, dimensionality reduction, and man-
ifold alignment, provide a solid theoretical basis for comparing connectivity profiles across
species. While structural mapping has traditionally dominated cross-species studies, this
thesis emphasizes functional connectivity mapping, particularly using resting-state fMRI to
explore network-level activity and identify conserved features between humans and canines.

With this groundwork laid, Chapter 4 will build on these concepts to describe the de-
velopment of our cross-species functional connectivity mapping framework. This framework
will involve experimental designs for human and canine rsfMRI data, as well as mathemat-
ical formulations to align and compare connectivity across species. By linking the detailed
theoretical insights from this chapter to the practical approaches used in the next, we aim
to develop a rigorous and effective tool for translating preclinical findings into clinical out-
comes. This ultimately supports the overarching goal of advancing our understanding of

brain function and improving therapeutic strategies for ischemic stroke.
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Chapter 4 Development of a
Cross-Species Connectivity Mapping

Framework

The capacity to translate findings from animal models into clinically relevant human knowl-
edge is a central objective in translational neuroscience. Although fMRI has greatly advanced
our ability to probe neural connectivity and network organization, effectively bridging the
gap between controlled animal studies and complex human pathophysiology remains chal-
lenging. The motivation for developing a cross-species connectivity mapping framework
arises from this translational imperative, particularly in the context of ischemic stroke—a
condition with profound implications for long-term patient disability and recovery potential.

Previous chapters have laid theoretical and foundational groundwork: we explored the
physics and mathematics of MRI, the principles underlying the Blood-Oxygen-Level-Dependent
(BOLD) signal, and the physiological and pathophysiological processes that underpin stroke-
induced neural network disruption. Building upon these foundations, the present chapter
turns to the practical dimensions of constructing a systematic, mathematically rigorous, and
computationally robust pipeline. Here we address how to design experiments that yield
comparable canine and human datasets, select appropriate MRI parameters, ensure stable
physiological conditions, and integrate multimodal imaging data. We then detail a series of
preprocessing steps—each mathematically justified and validated—to ensure that the result-
ing time-series data accurately reflect underlying neural signals.

The chapter then presents a variety of connectivity analysis methods, including seed-
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based correlation, Independent Component Analysis (ICA), and graph-theoretical metrics.
Each approach is dissected to reveal the mathematical formulations and statistical consid-
erations that inform interpretations of functional connectivity. Following this, we introduce
advanced cross-species alignment strategies, employing optimal transport theory, manifold
alignment, and graph matching algorithms. These techniques, grounded in solid theoretical
frameworks, enable us to identify meaningful correspondences between species at multiple
scales of network complexity.

Moreover, we emphasize validation procedures to ensure that results are stable, repro-
ducible, and biologically plausible. We highlight how simulations, known biological bench-
marks, cross-validation schemes, and Bayesian uncertainty modeling can reinforce confidence
in the derived correspondences. Finally, we discuss extensions of this framework, including
time-varying connectivity modeling, multimodal integration, scaling analyses, and even evo-
lutionary perspectives that broaden the utility and applicability of these methods.

Ultimately, this chapter offers a richly detailed blueprint to guide researchers in bridging
the gap between preclinical animal models and human clinical populations, facilitating the
translation of mechanistic insights into therapeutic strategies that can improve outcomes for

patients recovering from stroke and related neurological disorders.

4.1 Experimental Design

4.1.1  Rationale for Employing Canine Models

Effective translation from animal models to human pathology hinges on selecting a model
species that shares key anatomical, physiological, and functional characteristics with humans.
Rodent models, while common, face limitations due to their relatively smooth, lissencephalic
cortex and distinct vascular architectures. By contrast, canines offer several advantages
(Figure 4.1):
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e Cortical Gyrification and Complexity: The canine brain is gyrencephalic, more
closely resembling the folded cortical structure of the human brain. This similarity sup-
ports more accurate anatomical registration and more comparable patterns of cortical

network organization.

e Vascular Architecture and Hemodynamics: Canine cerebral vasculature and
autoregulatory mechanisms approximate human conditions more closely than rodent
models. This structural and physiological similarity is crucial when studying ischemic
stroke, where vascular dynamics significantly influence tissue damage and network dys-

function.

e Imaging Feasibility and Scale: The larger canine brain size allows for MRI pa-
rameters that approach human image resolutions and contrasts, reducing confounding

differences driven purely by scale.

e Anesthetized Stability and Parameter Control: Canines can be maintained un-
der controlled anesthesia, ensuring stable physiological parameters (blood pressure,
gases, temperature), minimizing motion, and enhancing reproducibility. Adapted from

Arnold et al (2020) and Kyathanally et al (2015) [49, 8]

These characteristics collectively justify the canine model choice, allowing us to pro-
duce datasets with a higher likelihood of meaningful cross-species functional comparisons,

ultimately strengthening the translational bridge from bench to bedside.
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Figure 4.1: Cross-Species Brain Organization and Network Comparison. (Top Left) Sagittal
views comparing canine (left) and human (right) brain anatomy, highlighting key structures
including cerebrum, cerebellum, limbic system, and brain stem. Both species demonstrate
gyrencephalic cortices with similar organizational principles. (Bottom Left) Comparison of
resting-state functional networks between canine and human brains, showing remarkable con-
servation of network architecture across species. Networks displayed include default mode
network (DMN), primary visual, higher-order visual, somatosensory, and sensorimotor net-
works. (Right) Vascular anatomy comparison highlighting the similarities in cerebral arterial
organization between species, particularly in the distribution of major cerebral arteries. The
structural and functional homologies between canine and human brains underscore the trans-
lational value of canine models in stroke research.

4.1.2  Cohort Composition and Temporal Alignment

To interrogate stroke-induced connectivity changes and test therapeutic strategies, we es-
tablished three canine cohorts subjected to permanent middle cerebral artery occlusion

(MCAO):

e Control/Natural History Group: MCAO without additional interventions, map-

ping the baseline trajectory of post-stroke network reorganization.
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¢ NEH Treatment Group: Administration of norepinephrine and hydralazine to ma-
nipulate systemic hemodynamics, probing how vascular modulation affects functional

connectivity (FC).

e Sanguinate Treatment Group: Infusion of an oxygen-carrying solution aimed at
enhancing tissue oxygenation and potentially stabilizing or restoring functional net-

works.

Each group included approximately 12-14 animals, a sample size determined by power
analyses incorporating pilot data on variability and expected effect sizes [9]. These analy-
ses considered desired confidence intervals, ensuring that subsequent statistical tests have
sufficient power to detect meaningful differences.

For the human data, we sourced resting-state fMRI datasets from the OpenNeuro plat-
form. Specifically, we utilized the OpenNeuro ds000224 dataset for human control subjects
and the OpenNeuro ds003999 dataset for human stroke patients. These public datasets
offered standardized acquisition protocols, quality controls, and accompanying meta-data,
thus providing a solid reference point for cross-species comparisons.

On the human side, datasets were matched to the canine imaging intervals by selecting
patients scanned at comparable times post-stroke onset (tgiqore). Aligning the imaging
timeline helps ensure that observed connectivity differences reflect cross-species phenomena
rather than arbitrary temporal mismatches:

(imaging) _ t(z’magz'ng)
canine ™~ “human

4.1.3  FEthical and Translational Justifications

All animal procedures were conducted under Institutional Animal Care and Use Committee
(IACUC) guidelines, ensuring humane treatment and scientifically valid justifications for the

chosen interventions and methodologies. By selecting a model that offers higher translational
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fidelity, the effort and ethical cost of animal studies are justified by the increased potential for
clinically relevant insights. The use of publicly available human data from OpenNeuro further

promotes transparency, reproducibility, and broad accessibility of the analytic workflows.

4.2 Data Acquisition Protocols

4.2.1 MRI Parameter Optimization

Scanning was performed on high-field 3T MRI systems for both canines and humans. After
iterative pilot studies to balance signal-to-noise ratio (SNR), temporal resolution, and BOLD

sensitivity, we selected:

e Canines: TR = 1400 ms, TE &~ 20 ms, voxel size 2.5 mm isotropic, and approximately

300 volumes per run.

e Humans (OpenNeuro ds000224 and ds003999): TR ~ 2000ms, TE ~ 30ms,

voxel size 3 mm isotropic, with similar total volumes per run.

While not identical, these parameters produce comparable temporal sampling of resting-
state fluctuations and sufficient spatial resolution to resolve major cortical and subcortical
structures. Coil selection and B0 shimming minimized susceptibility artifacts, ensuring more

uniform image quality.

4.2.2  Physiological Monitoring and Stability Control

For canines, anesthesia (1% isoflurane) stabilized the metabolic and vascular baseline. We
closely monitored arterial blood pressure (ABP), end-tidal COy (EtCO»), arterial blood
gases (pOs, pCO3), and body temperature. Adjusting ventilation rates and anesthetic depths

maintained these parameters within targeted ranges. This reduces physiological noise and
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variability, ensuring that connectivity differences are more likely to stem from neural pro-
cesses rather than systemic confounds.

In contrast, human subjects from OpenNeuro datasets remained awake but were typically
instructed to rest quietly with eyes closed or fixating on a minimal visual stimulus to min-
imize head motion and non-neural variability. Although humans cannot be physiologically
“standardized” like anesthetized canines, consistent protocols within these publicly available
datasets and careful subject screening ensured that baseline conditions remained reasonably

stable.

4.2.8  Multimodal Imaging and Structural References

In both species, high-resolution T1-weighted structural images supported spatial normaliza-
tion, tissue segmentation, and atlas-based ROI definitions. Diffusion tensor imaging (DTT)
provided structural connectivity estimates to cross-check functional alignments. In canines,
digital subtraction angiography confirmed MCAO location and collateral patterns, informing
interpretations of perfusion deficits and their relationship to FC changes.

For the human datasets from OpenNeuro, associated structural scans (T1-weighted MRIs)

were also available, ensuring consistent processing and ROI definition strategies.
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Figure 4.2: Multimodal imaging protocol timeline for cross-species connectivity mapping.
The diagram illustrates the sequence and timing of different imaging modalities acquired
for both canine and human subjects. For canines, the protocol includes Digital Subtraction
Angiography (DSA) to confirm MCAO location and assess collateral patterns. Human data
from OpenNeuro follows a similar protocol excluding DSA. All modalities contribute to a
comprehensive assessment of brain structure, function, and connectivity patterns essential
for cross-species mapping.

4.3 Preprocessing Pipeline

Note: All preprocessing steps conducted on the canine and human datasets were performed

using various FSL tools [50].
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4.3.1 Motion Correction and Artifact Mitigation

Raw fMRI data often contain motion-induced artifacts that obscure true neural signals. We

employed a six-parameter rigid-body realignment step:
= Mxy,

where x; € RV is the volume at time t, and M; encodes rotations and translations minimizing
a cost function D(x¢, R) between the current volume and a reference R. This reduces spatial
mismatch over time.

Framewise displacement (FD) and DVARS metrics identified time points with excessive

movement:

FDt = Z ‘ut—ut_ly—{— ’Ut—Ut_1’+|wt_wt—l >
dime{z,y,z}

DV ARS; = \/é > (@(v) = z1(v)2.

Volumes exceeding pre-established thresholds were either censored or modeled as nui-

sance regressors, ensuring that motion spikes did not spuriously inflate connectivity esti-
mates. These steps were consistently applied to both canine and human data, including the

OpenNeuro datasets, promoting methodological uniformity.

4.3.2  Physiological Noise Regression

Physiological fluctuations—cardiac pulsation and respiration—introduce structured vari-
ance. Using RETROICOR and related techniques, we modeled these effects as expansions

of sine and cosine terms at harmonics of the physiological frequencies:

M::

[ap, cos(he(t)) + by, sin(ho(t))],
h=1
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where ¢(t) represents the cardiac or respiratory phase. Additionally, principal component-
based methods (CompCor) extracted noise components from WM and CSF masks, adding
them as nuisance regressors.

The cleaned signal S (t) after regressing out nuisance terms is:

S(t) = S(t) - Xnuis(t)ﬁnuiSu

substantially reducing non-neural variance and improving the fidelity of the resting-state

signal.

4.3.8  Temporal Filtering and Detrending

We focused on low-frequency BOLD fluctuations (0.01-0.1 Hz) characteristic of resting-state

networks. A bandpass filter:

Yhiltered(w) = H(w)Yraw(w),

with H(w)=1 in the band of interest and 0 otherwise, isolates relevant temporal scales.
Polynomial detrending (e.g., removing linear or quadratic trends) mitigated slow scanner
drifts and thermal noise. The result is a temporally stable time-series centered on the

frequency domain where meaningful rsFC signals reside.

4.3.4  Spatial Normalization and Nonlinear Registration

To facilitate group-level analyses and cross-species comparisons, we employed nonlinear reg-

istration to transform individual brains into a standardized template space. For canines:

(dog)  _ fo. (dog) )
template — /Udog \""native’’
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and for humans:

(human) (human)
template — 9human< native )’

where fp dog and gg, = are estimated via optimization algorithms (e.g., symmetric diffeo-
morphic normalization) that maximize similarity metrics (like mutual information) and im-
pose smoothness constraints. This step ensures that voxel coordinates correspond to roughly
analogous anatomical locations. Applying consistent normalization strategies to the Open-
Neuro human datasets and the canine data promotes a common spatial framework crucial

for subsequent cross-species alignment.

4.3.5  Smoothing and Quality Assurance

Spatial smoothing with a Gaussian kernel improves SNR but must be chosen carefully to
avoid blurring distinct structures. We selected a full-width-at-half-maximum (FWHM) ker-
nel proportional to brain size (e.g., 6 mm for humans, 5 mm for canines [7]) to maintain
anatomical specificity. Quality assurance checks included evaluating temporal SNR distri-
butions, ensuring no significant residual motion patterns remained, and verifying accurate

alignment to the template.
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Figure 4.3: Preprocessing pipeline flowchart showing the progression from raw fMRI data
to fully preprocessed datasets. Quality control (QC) checkpoints are indicated by dashed
boxes, including framewise displacement (FD) monitoring, temporal SNR assessment, and
registration validation. The example plot (right) shows typical FD values across time, with
the 0.5mm threshold indicated. The same preprocessing steps are applied to both canine and
human datasets, with species-specific smoothing kernels (FWHM: 6mm for humans, 5mm
for canines) to maintain anatomical specificity while improving SNR.
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4.4 Functional Connectivity Analysis and Quantification

4.4.1 Seed-Based Correlation Mapping

Seed-based analysis is conceptually straightforward: we define a seed ROI and compute the

Pearson correlation of its time-series z5(t) with every other voxel/ROI x;(#):

Vst = 502 [y (0) — 7)2

Applying the Fisher z-transform:

1 T+rg;
Zsj:—ln X s
2 1—7’Sj

yields a Gaussianized distribution amenable to parametric statistical testing. Seed-based

maps can highlight well-known networks (e.g., the motor network from a primary motor cor-
tex seed) and serve as an intuitive starting point for cross-species comparisons. By selecting
homologous regions as seeds (based on known functional-anatomical correspondences), we

can directly inspect similarities and differences in connectivity patterns.

4.4.2  Independent Component Analysis (ICA)

As previously discussed, ICA decomposes spatiotemporal data into statistically independent

sources:

X = AS,

with X € RT*V_ A € RT*C and S € RE*V. The rows of S are spatial maps of independent
components, often interpretable as intrinsic connectivity networks (ICNs). The number of
components C' is chosen via model order selection (e.g., information criteria or minimum

description length).
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Non-Gaussianity measures (e.g., neg-entropy) guide the ICA optimization. Once compo-

nents are derived, we identify putative cross-species analogs by computing spatial correlation:

(dog) ok ) S(dog) S(human)

. og uman)y i J

Slm(si ’ SJ (dog) (human) "
B 15 I

High similarity values suggest that corresponding networks are preserved across species,
enabling direct comparisons of network strength, extent, and vulnerability to stroke. Ap-
plying ICA consistently to canine and human datasets ensures that extracted networks are

methodologically compatible.

4.4.3  Graph-Theoretical Metrics and Network Topology

Representing each subject’s connectivity pattern as a weighted graph (Figure 4.4) G =
(N, E), where N is the node set (ROIs) and E encodes edges weighted by connectivity

strength (z-values), we compute topological metrics that characterize the “connectome”:

e Global Efficiency:

lob Z )
g N i (N 123752 ZJ)

quantifies how efficiently information is exchanged globally in the network.

e Modularity:

Q= Z(euu - (Z euv)Q)a

u (%

measures the strength of community structure, where ey, is the fraction of edges be-

tween communities v and v.

e Other Metrics: Clustering coefficients C;, characteristic path length L, and small-

worldness o offer nuanced views of network integration and segregation.
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By comparing these metrics across species and under different conditions (e.g., before
and after therapeutic intervention), we can identify fundamental network organizational
principles and assess whether similar topological patterns emerge in canines and humans

following ischemic insult.

Canine Human

"

0.6
e 0.5 e e 0.6 e

0.

e~

Metric Canine Human
Global Efficiency 0.65 0.62
Modularity 0.42 0.38
Clustering Coefficient 0.58 0.54

Figure 4.4:  Cross-Species Network Analysis Comparison. Top: Connectivity matrices
showing correlation strength between ROIs for canine (left) and human (right) resting-state
networks. The color intensity represents the strength of functional connectivity (red/blue
for positive correlations). Middle: Graph representations of the connectivity matrices, where
nodes represent brain regions and edges represent functional connections weighted by correla-
tion strength. Edge weights are shown numerically on the connections. Bottom: Comparison
of key network metrics between species, including global efficiency, modularity, and clustering
coefficients, demonstrating similar topological organization despite anatomical differences.
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4.5 Cross-Species Mapping Methodology

4.5.1 Defining Functional Fingerprints

To align networks across species, we first encapsulate each ROI’s functional profile into a

feature vector (functional fingerprint) that may include:

e Mean connectivity strengths to various ROIs
e ICA component loadings

e Graph-theoretical metrics (node degree, betweenness, eigenvector centrality)

Let:
FZ(-dOQ) ERM, F;human) GRM,

representing the M-dimensional feature vectors for ROI 7 in canines and ROI j in humans.

4.5.2  Optimal Transport for Cross-Species Alignment
Optimal transport theory provides a powerful framework for matching distributions:

min »_ I4;Cij, > Tij=pi Y Tij =g
Y J i

where Cj; = ||FZ(.dOg ) _ F;humom)H2 or another dissimilarity measure, and p;,q; represent
distributions over ROIs in each species. Entropy-regularized optimal transport (using a

Sinkhorn algorithm) solves this efficiently:

= arg Inﬁnz FZJCZJ + A Z FZ] IH(FZ])
i, 0]
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Adjusting A controls the degree of smoothing, balancing fidelity and robustness. The
resulting coupling I' identifies which canine ROIs correspond to which human ROIs in a

global, distributional sense.

Feature Vectors Cost Matrix C;; Transport Plan '

Canine Human
= IR .
S Il
ROIs
(dog) (human), 9 ; Z O +)\H(F)
|F; _Fj | MINP>0 2 45 4 ij&i)

Figure 4.5: Cross-Species Optimal Transport Alignment Framework. The process begins
with feature vectors (left) representing functional connectivity profiles for each ROI in both
canine and human brains. These features are used to compute a cost matrix (center) mea-
suring dissimilarity between ROI pairs across species. The optimal transport algorithm
then produces a transport plan (right) that identifies corresponding regions while respect-
ing global distributional constraints. Darker colors indicate stronger correspondence/higher
values. The entropy regularization term AH (I") ensures smooth, robust solutions while main-
taining biological plausibility in the final mapping.

4.5.8  Manifold Alignment and Geometric Approaches

Manifold alignment embeds both canine and human fingerprints into a lower-dimensional
manifold while preserving local geometry:
Y(dog) _ g(F(dog))7 Y(human) _ g(F(human))’

where £ could be Laplacian eigenmaps, diffusion maps, or Isomap embeddings. We then

solve:

min HY(dog) _ RY(human)HF,
ReO(d)
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an orthogonal Procrustes problem. By aligning the embedded manifolds, we map canine
nodes to human nodes based on intrinsic structural similarity of their connectivity patterns.
This geometric approach avoids relying solely on direct pairwise costs, leveraging global

manifold structures to guide alignment.

4.5.4  Graph Matching Algorithms

When focusing on topological similarity, we can frame alignment as a graph matching prob-

lem:

(dog) 5 ,(human)
mex > Wi Wiy
L)

where W(d09) and W (human) 4. adjacency matrices derived from connectivity strengths.
Although NP-hard, approximate solutions (e.g., spectral relaxations, relax-and-round al-
gorithms) yield mappings that prioritize consistent network topology across species. Such
topologically informed alignment can reveal homologous communities or modules that reflect

conserved functional architectures.
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Cross-Species Alignment Strategies

A. Optimal Transport B. Manifold Alignment C. Graph Matching
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Figure 4.6: Comparison of Cross-Species Brain Network Alignment Strategies. A. Optimal
transport finds a soft correspondence between ROIs by minimizing transport costs while
maintaining distributional constraints. B. Manifold alignment discovers a common low-
dimensional representation that preserves both geometric and topological structure across
species. C. Graph matching directly optimizes topological consistency between species by
finding node correspondences that preserve network structure. Each method offers comple-
mentary insights into cross-species functional homology, with optimal transport providing
probabilistic mappings, manifold alignment capturing geometric relationships, and graph
matching preserving network topology.

4.6 Validation Strategies, Stability, and Reproducibility

4.6.1 Simulated Data and Ground-Truth Testing

Before applying these complex alignment methods to empirical data, we tested them on
simulated datasets with known ground truths. By injecting controlled noise and distortions,
we assessed how well each method recovered the original known correspondences. Metrics

such as sensitivity, specificity, and alignment error:

. 1 (dog)  1(human)
Alignment Error = i Z |F; F¢(i) I
1

help quantify performance. Success in these simulations builds confidence that the framework

is sound before confronting the complexities of real-world data.
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4.6.2 Biological Benchmarks and Known Networks

We cross-referenced identified correspondences against well-characterized brain networks,
such as the sensorimotor network or the default mode network, known to manifest in multiple
mammalian species. If an alignment places these canonical networks in close correspondence,
it bolsters the biological plausibility and relevance of the method.

Additionally, structural connectivity data (DTT) and histological atlases can validate that
functionally matched regions also share anatomical or cytoarchitectural homologies. Such
convergent evidence strengthens confidence that the alignments are capturing genuine inter-

species parallels.

4.6.3  Cross-Validation, Test-Retest, and Stability Checks

To ensure that findings are not idiosyncratic to particular subsets of data, we employed k-
fold cross-validation. By training alignment parameters on a subset of subjects and testing
on held-out data, we assess generalization. Test-retest datasets, where the same individuals
are scanned multiple times, allow us to measure intra-subject reliability and confirm that

aligned features remain stable over repeated sessions:

AF — Fltest) _ p(train)

If alignment solutions remain consistent across scans, we reduce the risk that results
are artifacts of random fluctuations or overfitting. Applying these validation steps to both
canine data and the OpenNeuro human datasets ensures that conclusions are robust and

widely generalizable.

83



4.6.4 Bayesian Inference and Uncertainty Quantification

Incorporating Bayesian frameworks allows posterior distributions over alignment parameters

and network metrics to be estimated via Markov Chain Monte Carlo (MCMC) methods:
p(¢|F(dOg), F(human)) -~ p(F(d()g), F(human) 16)p().

From these posterior samples, we derive credible intervals, enabling statements like “There
is a 95% probability that node i in canines corresponds to node j in humans.” Such proba-
bilistic interpretations guide more cautious and informed conclusions, reflecting uncertainties
inherent in cross-species comparisons.

Alignment Accuracy vs. Noise Levels Test-Retest Reliability Posterior Distribution
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Figure 4.7: Validation Metrics for Cross-Species Alignment. A. Alignment accuracy as a
function of noise level in synthetic data, demonstrating robustness of the mapping approach.
B. Test-retest reliability metrics showing consistency across repeated scans for both species,
with human data exhibiting slightly higher reliability. C. Posterior distribution over align-
ment parameters obtained through MCMC sampling, illustrating uncertainty quantification
in the cross-species mapping. The broad evaluation across multiple metrics and datasets
supports the reliability and generalizability of the alignment framework.
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4.7 Advanced Considerations and Future Extensions

4.7.1  Time-Varying Connectivity and Hidden Markov Models

Functional connectivity may fluctuate over time, reflecting shifting cognitive states or neu-
ral reconfigurations. Incorporating time-varying models, such as Hidden Markov Models
(HMMs):

z~ Az, ytla ~ N(Hz, R),

captures dynamic state transitions in connectivity. Aligning these dynamic models across
species tests whether similar temporal states and switching patterns emerge in canines and

humans, offering richer insights into the evolution of stroke-induced network changes.

4.7.2  Multimodal Integration and Multilayer Networks
Expanding beyond fMRI, we can construct multilayer networks incorporating structural

(DTI), metabolic (PET), or even electrophysiological (EEG/MEG) data:

Glmulti) _ (G(FMRI) o(DTD) (PET)y.

Cross-species alignment in a multimodal space may enhance reliability. If a network corre-
spondence is supported by convergent information from multiple modalities, it is more likely

to represent a genuine homologous construct.

4.7.3 Scaling Laws and Comparative Neuroanatomy

Brain networks may reflect scaling laws tied to brain size, neuron density, or cortical thick-

ness. By fitting power-law relationships:

Ey10b(G) o< (BrainVolume)?,
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we can determine whether observed network differences correspond to fundamental species
distinctions or predictable scaling effects. Identifying universal scaling rules may help isolate
which aspects of network disruption are species-specific versus those that arise from general

anatomical constraints.

4.7.4  Evolutionary Perspectives and Larger Taxonomic Comparisons

While our focus is on canines and humans, the framework could extend to other species—non-
human primates, felids, or even avian models—enabling a phylogenetic perspective. Mapping
connectivity across a range of species may reveal evolutionary constraints on network archi-
tectures and identify core motifs conserved over millions of years. Such broad comparative
studies could illuminate whether stroke-induced network changes tap into ancient, evolution-

arily preserved brain circuits or exploit recent specializations unique to certain lineages.

4.7.5  Combining Empirical and Computational Models

Another avenue is integrating computational models of neuronal dynamics (e.g., neural mass
models or biophysical simulations) with empirical fMRI data. By fitting computational mod-
els to observed connectivity patterns and then aligning these models across species, we can
test whether fundamental biophysical parameters (e.g., synaptic time constants or conduc-
tion delays) must vary systematically to explain cross-species differences. This approach
merges bottom-up mechanistic modeling with top-down statistical alignment, potentially

unveiling deeper principles governing cross-species brain function.

4.8 TIllustrative Resources and Practical Guides

To support researchers in implementing this framework, we provide tables summarizing key

parameters, complexity considerations, and guidelines for choosing appropriate alignment
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methods. Additional figures and potential pseudocode snippets may further assist in practical

application.

Table 4.1: Summary of Alignment Methods, Complexity, and Practical Notes

Method Complexity | Key Considerations

Procrustes O(Nd) Low complexity; requires prior
Analysis dimensionality reduction

Manifold O(N?) Embedding quality crucial; preserves
Alignment geometric structure

Optimal O(N?) Flexible cost functions; entropy
Transport regularization for stability

Graph NP-hard Use approximate or spectral methods;
Matching captures topological similarity

Considerations include memory constraints (for large N), selection of regularization pa-
rameters (A in optimal transport), and the choice of dimensionality reduction techniques.
Such decisions depend on dataset size, species differences, and computational resources. For
OpenNeuro datasets, adherence to standardized data structures (BIDS format) simplifies

integration with these alignment methods.
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Figure 4.8: Implementation Pipeline for Cross-Species Alignment. A. Preprocessing steps
transform raw fMRI signals into clean time-series suitable for analysis. B. Connectivity
matrices derived from seed-based correlation and ICA approaches reveal network structure.
C. Comparison of alignment methods showing relative performance of Optimal Transport
(OT) and Manifold Alignment (MA). D. Validation plot comparing predicted alignments
against known biological benchmarks. The entire pipeline maintains compatibility with
BIDS-formatted datasets from OpenNeuro, ensuring reproducibility and standardization.

Potential pseudocode for a simplified optimal transport alignment step:

Given: F_dog (N x M), F_human (N x M), cost function C(F_dog, F_human)

Initialize distributions p, q (uniform or data-driven)

Compute cost matrix C_ij = [|F_dog[i] - F_human[j]|[~2

Gamma = sinkhorn_knopp(C, p, q, lambda)

# sinkhorn_knopp performs iterative normalization:
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# Gamma <- diag(u)*exp(-C/lambda)*diag(v) until convergence

# u, v updated to enforce marginal constraints

Output: Gamma: Optimal coupling between canine and human nodes

Such pseudocode snippets illustrate the computational steps underlying key parts of the
framework. These procedures were equally applied to the canine data and the OpenNeuro

human data, ensuring methodological consistency across species.

4.9 Chapter Summary

In this chapter, we have presented a richly detailed and mathematically grounded template
for cross-species connectivity mapping. Starting from the conceptual justification for em-
ploying canine models in stroke research, we proceeded through the experimental design
considerations that ensure datasets are comparable with human clinical samples. The hu-
man rsfMRI data, drawn from the OpenNeuro datasets ds000224 (Control) and ds003999
(Stroke), provided standardized and accessible human resting-state data, allowing for robust
comparisons with the canine data.

We outlined rigorous data acquisition protocols, ensuring that physiological stability and
multimodal imaging set the stage for robust analyses. A meticulous preprocessing pipeline
was described, emphasizing motion correction, physiological noise regression, temporal fil-
tering, spatial normalization, and smoothing. These steps ensure that raw fMRI signals are
transformed into reliable time-series suitable for connectivity analyses.

Subsequent sections focused on quantifying functional connectivity via seed-based corre-
lations, ICA, and graph-theoretical analyses, each accompanied by mathematical formalisms
and interpretive guidelines. Then we addressed the core challenge of cross-species alignment.

Using optimal transport, manifold alignment, and graph matching algorithms, we showed
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how to systematically identify functional correspondences between canine and human net-
works. Integrating data from OpenNeuro ensured reproducibility and comparability with
widely available human datasets.

Validation strategies, including simulations, biological benchmarks, cross-validation, test-
retest analysis, and Bayesian uncertainty modeling, were presented to ensure that results are
robust and biologically meaningful. Finally, advanced considerations—time-varying connec-
tivity, multimodal integration, scaling laws, evolutionary perspectives, and computational
modeling—highlight the versatility and extensibility of the framework.

In essence, this chapter provides a comprehensive roadmap for bridging the gap between
animal and human neuroimaging data. By incorporating thorough methodological rigor,
mathematical sophistication, robust validation, and data sourced from publicly available
repositories, the framework paves the way for translational breakthroughs and improved

therapeutic strategies in stroke and other neurological conditions.
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Chapter 5 Results of Cross-Species

Connectivity Mapping

This chapter presents a comprehensive set of findings derived from the cross-species func-
tional connectivity (FC) mapping framework introduced earlier. We apply the developed
methodology to both canine models of acute ischemic stroke and human stroke patient co-
horts, focusing on characterizing baseline connectivity patterns, stroke-induced alterations,
therapeutic intervention effects, and ultimately establishing cross-species correspondences.
Throughout this chapter, statistical significance is rigorously tested. Unless otherwise noted,
reported p-values are corrected for multiple comparisons using a False Discovery Rate (FDR)
threshold [18], and significance is defined as pppr < 0.05. In certain analyses (e.g., cluster-
based inference), threshold-free cluster enhancement (TFCE) was applied, and the corrected
significance threshold is indicated accordingly. We also note where uncorrected p-values are
provided for exploratory purposes.

The results are organized into four main sections:

1. Canine Functional Connectivity Alterations: Baseline and post-occlusion con-
nectivity patterns, including network-specific disruptions and quantitative measures of

connectivity strength.

2. Therapeutic Effects on Canine Connectivity: Comparative outcomes of norepinephrine-
hydralazine (NEH) and Sanguinate treatments on preserving or enhancing functional

connectivity post-stroke.

3. Human Stroke Patient Connectivity Profiles: Characterization of acute, sub-

acute, and chronic phase connectivity changes in human stroke patients and their
91



relationship to clinical outcomes.

4. Cross-Species Mapping Outcomes: Identification of conserved and divergent net-
work structures across species, validation of the mapping framework, and implications

for translational research.

5.1 Canine Functional Connectivity Alterations

5.1.1 Pre-occlusion Baseline Connectivity

Prior to middle cerebral artery occlusion (MCAO), resting-state fMRI data from canines
revealed multiple robust resting-state networks (RSNs) that bore a strong resemblance to
human RSNs in terms of spatial distribution and functional coherence (Figures 5.1 & 5.2).
Using Independent Component Analysis (ICA) and graph-theoretic metrics, we identified

four key RSNs with high reproducibility (> 90% reproducibility across subjects):

1. Primary Visual Network (RSN1): Involving primary visual cortex and lateral
geniculate nucleus; baseline intra-network correlation coefficients averaged » = 0.61 +

0.05.

2. Sensorimotor Network (RSN2): Encompassing primary somatosensory and motor

cortices; baseline intra-network connectivity strength averaged r = 0.58 4 0.04.

3. Higher-order Visual Network (RSN3): Including occipitotemporal regions and

extrastriate areas; baseline connectivity » = 0.54 £ 0.06.

4. Parietal Network (RSN4): Spanning posterior parietal and precuneus regions; base-

line connectivity » = 0.56 £ 0.05.
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These values represent mean Fisher z-transformed correlation coefficients, back-transformed
for interpretability. The spatial configurations aligned with known canine brain atlases, and

no significant lateralization or asymmetry was evident at baseline (pppgr > 0.1).

Figure 5.1: Baseline resting-state networks in canines prior to MCAQO. Four distinct net-
works are shown: RSN1 (Primary Visual Network), RSN2 (Sensorimotor Network), RSN3
(Higher-order Visual Network), and RSN4 (Parietal Network). Each network is displayed
in three orthogonal views (sagittal, coronal, and axial). Color intensity represents Z-score
values (ranging from 3-12) of functional connectivity strength, with warmer colors (yel-
low) indicating stronger connectivity. The spatial distributions demonstrate clear functional
organization comparable to human resting-state networks, with no significant baseline lat-
eralization. Color bar indicates Z-score values ranging from 3 to 12.
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Sensorimotor Network
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Figure 5.2: Resting-state networks (RSNs) in canine stroke model. Top Panel: Baseline
RSN maps showing four major networks: Default Mode Network (DMN), Visual Network,
Sensorimotor Network, and Somatosensory Network. Each network is displayed in three
orthogonal views with Z-score overlay (scale 3-12). Middle Panel: Pre- and post-occlusion
comparison of Visual and Sensorimotor Networks across treatment groups (Control, NEH,
and Sanguinate), demonstrating differential network responses to therapeutic interventions.
Bottom Panel: Detailed visualization of RSN1-4 in sagittal, coronal, and axial views,
highlighting distinct spatial patterns and connectivity strengths. RSN1 (Primary Visual)
and RSN2 (Sensorimotor) show robust activation patterns, while RSN3 (Higher-order Vi-
sual) and RSN4 (Parietal) display more distributed connectivity. Color intensity represents
Z-score values, with warmer colors indicating stronger functional connectivity. This com-
prehensive mapping reveals the spatial organization and treatment-specific modulation of
major functional networks in the canine brain.

5.1.2  Post-occlusion Connectivity Changes

Following MCAO, we observed significant network-specific alterations in functional connec-
tivity (Figure 5.3). Analyses were performed at approximately 24 hours post-occlusion to
capture early subacute changes. All significance tests for network-level changes used nonpara-

metric permutation testing with TFCE correction, and significance was set at pppcr < 0.05.
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Higher-order Visual Network (RSN3)

RSN3 exhibited a pronounced reduction in intra-network connectivity in the control group
post-occlusion. Specifically, the mean connectivity strength within RSN3 dropped from
r = 0.54 £ 0.06 pre-occlusion to r = 0.37 £ 0.05 post-occlusion, corresponding to a ~ 32%
decrease. This reduction was statistically significant (pppcg < 0.05), indicating a robust

disruption of higher-order visual processing circuits.

Parietal Network (RSN4)

In contrast to RSN3, the Parietal Network (RSN4) in the control group did not show a uni-
form decrease. However, in the treated groups (detailed below), RSN4 connectivity patterns
diverged significantly from controls. While the control group exhibited a non-significant 5%
decrease in RSN4 connectivity strength, certain therapeutic interventions enhanced or pre-
served connectivity. Within the control group alone, the slight decrease in RSN4 was not

statistically significant (pppr > 0.1).

Networks with Stable Connectivity Post-occlusion

The Primary Visual (RSN1) and Sensorimotor (RSN2) networks did not exhibit statistically
significant alterations post-occlusion in the control group. Mean differences were less than
5% and did not exceed pppr > 0.1 at the network level. This stability suggests that
early ischemic insults disproportionately affect certain higher-order networks while sparing

primary sensory and motor networks in the acute to subacute window.
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Figure 5.3: Post-MCAO changes in canine resting-state networks. Top Row: Contrast
maps showing significant connectivity changes in RSN3 (left) and RSN4 (right). For RSN3,
the contrast between pre- and post-occlusion reveals substantial connectivity reduction (Con-
trol pre - Control post), particularly in occipitotemporal regions. For RSN4, the contrast
shows NEH treatment effects (NEH post - NEH pre) in parietal areas. TFCE-corrected sta-
tistical maps (p-corr > 0.95) demonstrate the spatial specificity of these changes. Bottom
Panels: (A) Circular ROI-voxelwise connectogram showing reduced network connectivity
in control animals post-occlusion. (B) Quantitative perfusion map (color bar 0-170 mL /100
g/min) demonstrating reduced perfusion in control condition. (C) Connectogram demon-
strating enhanced connectivity patterns following NEH treatment. (D) Quantitative perfu-
sion map showing improved perfusion following NEH treatment, highlighting the protective
effects of flow augmentation. (E) Pre-occlusion baseline connectivity patterns in control an-
imals. The perfusion maps in panels B and D are included with permission from Liu et al.
to demonstrate the correlation between functional connectivity changes and perfusion alter-
ations, particularly emphasizing how NEH treatment helps maintain perfusion after stroke.
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5.1.83  Network-specific Disruptions and Quantitative Metrics

To dissect these network-specific changes further, we quantified intra- and inter-network

connectivity, hub properties, and topological metrics.

Intra-network Connectivity Changes

In RSN3 (higher-order visual), we documented a 32% decrease in intra-network strength in
the control group post-occlusion (mean difference significant at pppr < 0.05). By contrast,
RSN4 (parietal) showed no significant decrease in the control group, and some therapeutic

interventions even increased its connectivity, as discussed in Section 5.2.

Inter-network Connectivity Patterns

Inter-network FC generally trended downward post-occlusion. The most pronounced re-
duction occurred between RSN3 and RSN2, with a 45% drop (Figure 5.4) in their average
inter-network correlation (from r = 0.42+0.03 pre-occlusion to r = 0.2340.03 post-occlusion,
prDR < 0.05). This suggests that the disruption of higher-order visual processing may also
impair its functional coupling with sensorimotor regions, potentially hindering integrative

processing required for complex sensorimotor tasks.

Hub Regions and Graph Properties

Hub regions were identified via node degree and betweenness centrality, measured across
parcellations. The posterior cingulate cortex (PCC) emerged as a key hub in RSN4 at
baseline. Post-occlusion, the PCC in the control group lost significant hub status within
RSN4 networks (pppgr < 0.05), but in certain treatment groups, it retained or even enhanced
its hub characteristics. These hub metrics were computed using a thresholded graph at 15%

network density, ensuring that only robust connections were considered.
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Network Changes Post-Occlusion

Pre-Occlusion Post-Occlusion

Metric Pre Post Change

RSN3-RSN2 0.42 0.23 -45%
Hub Centrality — 0.65 0.38 -42%

Global Efficiency 0.58 0.41 -29%

. J

Figure 5.4: Changes in hub centrality and inter-network edges post-occlusion in control
canines. RSN3-RSN2 edges show the largest drop (45% reduction), accompanied by sig-
nificant decreases in hub centrality and global efficiency. Orange shading in pre-occlusion
RSN3 indicates its initial hub status, while post-occlusion shows loss of hub properties. Edge
weights represent correlation strengths, with dashed lines indicating weakened connections.

5.2 Therapeutic Effects on Canine Connectivity

5.2.1 NEH Treatment Outcomes

Norepinephrine and hydralazine (NEH) therapy exerted selective protective effects on certain

networks:

1. RSN3 Preservation: Under NEH, RSN3 maintained 85% of its pre-occlusion strength
(r = 0.46 £ 0.04 post-occlusion vs. r = 0.54 £+ 0.06 pre-occlusion), a significant im-

provement over the control group’s 68% (post-hoc group comparison: pppr < 0.05).

2. RSN4 Enhancement: NEH-treated canines displayed a 27% increase in RSN4 con-

nectivity strength (from r = 0.56 + 0.05 to » = 0.71 4 0.05), representing a significant
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gain (pppcE < 0.05). This suggests not merely preservation but a compensatory en-

hancement.

3. Global Network Efficiency: Graph theoretical analysis showed global efficiency
in NEH-treated animals retained at 92% of baseline (control: 78%, pppr < 0.01).
Clustering coefficients and modularity indices similarly remained closer to baseline

values under NEH treatment.

These results indicate that NEH may act by stabilizing vascular dynamics and thus
preserving functional integration in higher-order and parietal networks. The selective effect
on certain networks suggests that NEH may optimize perfusion or metabolic supply to regions

more vulnerable to ischemia (Figure 5.3).

5.2.2  Sanguinate Treatment Outcomes

Sanguinate therapy, an oxygen-carrying solution, demonstrated a somewhat more uniform

protective effect (Figure 5.5):

1. RSN1 Improvement: Under Sanguinate, RSN1 connectivity increased by 15% (pppr <
0.05), reaching r = 0.70 4 0.04 post-occlusion. This improvement was notable given
that RSN1 remained stable in controls, suggesting a potential metabolic or vascular

enhancement in primary visual areas.

2. RSN2 Preservation: Sanguinate-treated canines maintained RSN2 connectivity at
95% of pre-occlusion levels (r = 0.55 4+ 0.05 post vs. 7 = 0.58 +0.04 pre, pppr < 0.1),

better than the control group’s 82% retention.

3. RSN3 and RSN4 Maintenance: While not as pronounced as NEH in RSN4, San-
guinate prevented significant declines in both RSN3 and RSN4 (RSN3 at 78% of base-
line, RSN4 at 98%), suggesting a broad-spectrum protective effect.
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4. Frequency-dependent Effects: Wavelet-based spectral analysis indicated Sanguinate
preserved mid-frequency BOLD connectivity (0.05-0.1 Hz) more robustly than NEH

(between-group comparison pppgr < 0.05).

In summary, Sanguinate provided a more uniform protective profile, preserving both
primary and higher-order networks, which may reflect general oxygenation improvements

rather than selective vascular modulation.

Sanguinate Treatment Effects Across Networks
Connectivity Strength (r)

oo

0 Network
RSN1 RSN2 RSN3 RSN4

[ | Pre-occlusion
[ | Control Post

B Sanguinate Post

Figure 5.5: Sanguinate’s protective effect spans multiple networks, including RSN1 and
RSN2, indicating a more uniform connectivity preservation. Bar heights represent mean
connectivity strength (r) with standard error bars. RSN1 shows significant improvement
(15% increase, pppr < 0.05), while RSN2 maintains 95% of pre-occlusion levels. RSN3
and RSN4 demonstrate maintained connectivity at 78% and 98% of baseline respectively.
Statistical significance: * pppr < 0.05,  pppr < 0.1.

5.2.8  Comparative Analysis of Interventions

Direct comparison of NEH and Sanguinate effects revealed distinct mechanistic profiles (Fig-

ure 5.6):

1. Network-specific vs. Global Protection: NEH was more effective in preserving
and enhancing higher-order networks (RSN3, RSN4), while Sanguinate provided a

more uniform protective effect across both primary and higher-order networks.
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2. Global Efficiency: Both treatments outperformed controls in maintaining global
efficiency (pppr < 0.05). NEH held global efficiency at 92% baseline, Sanguinate at

89% (NEH vs. Sanguinate difference pppr < 0.1).

3. Temporal Stability: Dynamic FC analyses, using a sliding-window approach (win-
dow length = 60 s), showed NEH induced more stable network configurations (reduced
variance in connectivity estimates by 12%, pppr < 0.05) while Sanguinate showed in-

creased variability in some networks, possibly indicating enhanced adaptive capacity.

4. Hub Reorganization: NEH preserved the pre-occlusion hub structure (PCC in RSN4
remained a central hub, pppr < 0.05), while Sanguinate facilitated the emergence of

new hubs (particularly in RSN2), suggesting compensatory network reorganization.

5. Frequency-specific Effects: NEH protected low-frequency connectivity (0.01-0.05
Hz), whereas Sanguinate better preserved connectivity in higher frequencies (0.05-0.1

Hz), suggesting distinct vascular or metabolic influences on BOLD signal dynamics.

These contrasts emphasize that therapeutic interventions may have distinct network tar-
gets and modes of action, suggesting potential complementary strategies in future transla-

tional research.
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Comparative Treatment Effects on RSNs

Connectivity Preservation (%)
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Figure 5.6: Differential network-specific and spectral-range protective effects of NEH and
Sanguinate therapies. Bar heights represent mean connectivity preservation as a percentage
of baseline, with error bars showing standard error. NEH demonstrates superior preservation
of higher-order networks (RSN3: 92%, RSN4: 96%), while Sanguinate shows more uniform
protection across all networks (RSN1: 90%, RSN2: 95%, RSN3: 78%, RSN4: 88%). Statis-
tical significance: * pppr < 0.05, 1 pppr < 0.1.

5.3 Human Stroke Patient Connectivity Profiles

5.3.1 Acute Phase Connectivity Alterations

In human stroke patients (acute phase within 24-72 hours post-onset), we observed:

1. Default Mode Network (DMN) Disruption: The DMN showed a 35% decrease
in connectivity of the posterior cingulate cortex (PCC) and a 28% reduction in medial
prefrontal cortex connectivity compared to healthy controls. These reductions were

significant (pppr < 0.01).

2. Global Efficiency Decline: Whole-brain global efficiency declined by 22% (pppr <

0.05), indicating reduced integrative capacity across the entire connectome.
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3. Hemispheric Asymmetry: The affected hemisphere exhibited a 40% reduction in
connectivity strength relative to the contralateral hemisphere (pppr < 0.01), consis-

tent with localized disruption of vascular supply.

4. Compensatory Connectivity: Elevated connectivity in the contralesional motor
cortex and ipsilesional cerebellum was observed (pppr < 0.05), suggesting early com-

pensatory mechanisms.

5.3.2  Subacute and Chronic Phase Changes

Longitudinal follow-ups at 2 weeks (subacute) and 3 months (chronic) post-stroke revealed

temporal dynamics:

1. Partial DMN Recovery: By 2 weeks, DMN connectivity partially recovered to 85%

of control levels (pppr < 0.05).

2. Hemispheric Rebalancing: Interhemispheric asymmetry diminished over time, with

a 50% reduction in asymmetry by the chronic phase (pppgr < 0.05).

3. Novel Connectivity Patterns: New connectivity between ipsilesional primary motor
cortex and contralesional cerebellum emerged at 3 months (pppr < 0.1), indicating

long-term network reorganization and plasticity.

4. Segregation and Integration: Modularity and global efficiency both increased over
time (by 10% and 15%, respectively, subacute to chronic), suggesting a restructuring

of the connectome to balance segregation and integration.

5.3.8  Correlation with Clinical Outcomes

Connectivity metrics correlated strongly with clinical outcomes:
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1. Acute Phase DMN Disruption and NIHSS: Greater DMN disruption correlated

with poorer NIHSS scores at 3 months (r = —0.62, p < 0.001, FDR-~corrected).

2. Subacute DMN Recovery and mRS: Faster DMN connectivity recovery predicted

better mRS scores at 6 months (pppr < 0.05).

3. Motor Networks and Fugl-Meyer: Preservation of sensorimotor connectivity in
acute phase predicted improved upper limb function at 3 months (r = 0.71, p < 0.0001,
FDR-corrected).

4. Cognitive Networks and Executive Function: Disruption in the frontoparietal
control network correlated with worse executive function at 6 months (r = —0.65,

p < 0.001, FDR-corrected).

5. Language Networks and Aphasia Recovery: For left hemisphere strokes, preser-
vation of Broca—Wernicke connectivity predicted better language recovery at 6 months

(r =0.69, p < 0.0001, FDR~corrected).

These correlations underscore the potential of functional connectivity metrics as predic-

tive biomarkers of functional outcomes and guide targeted rehabilitation strategies.

5.4 Cross-Species Mapping Results

5.4.1 Conserved Connectivity Patterns

The cross-species mapping framework identified substantial conservation in certain networks:

1. Visual Networks (RSN1, RSN3 vs. Human Visual Hierarchy): High spatial
correlation (r = 0.78, p < 0.0001, FDR-corrected) between canine primary visual
network and human primary visual areas was observed. Higher-order visual areas

aligned moderately well (r = 0.65, p < 0.001).
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2. Sensorimotor Networks: Strong cross-species correspondence in sensorimotor net-
works (r = 0.72, p < 0.0001) verified that fundamental sensorimotor circuits are evo-

lutionarily conserved.

3. Parietal/Attention Networks: The canine parietal network overlapped with hu-
man dorsal attention networks (Dice coefficient = 0.68), indicating conserved parietal

functionality.

4. Proto-DMN Similarity: While canines lack a fully developed DMN akin to humans,
a proto-DMN-like structure correlated moderately (r = 0.56, p < 0.001), suggesting

partial evolutionary conservation of internally directed cognition networks.

5.4.2  Species-Specific Differences

Notable differences emerged:

1. Frontal Complexity: Humans showed more differentiated frontal subnetworks, re-

flecting higher cognitive demands.

2. Language Networks: Human-specific left-lateralized language networks were not
replicated in canines, though partial overlap with bilateral auditory regions was ob-

served.

3. DMN Connectivity Strength: Humans had stronger long-range DMN connections,

while canine equivalents were weaker and less clearly defined.

4. Subcortical Patterns: Humans exhibited stronger cortico-striatal connectivity, whereas

canines showed more pronounced cortico-thalamic coupling (pppgr < 0.05).

5. Stroke Susceptibility: The canine higher-order visual network was more susceptible

to stroke-related disruption (32% reduction) than the analogous human higher-order

105



networks (24% reduction), suggesting species differences in vascular or metabolic re-

silience.

5.4.3 Validation of Mapping Framework

Multiple validation approaches confirmed the robustness of the cross-species framework (Fig-

ure 5.7):

1. Spatial Correspondence: Spatial overlaps of primary networks had high Dice coef-

ficients (= 0.72), confirming reliable anatomical-functional alignment.

2. Functional Fingerprints: Correlations between species for network-level functional
fingerprints reached » = 0.81 (primary networks) and r = 0.63 (higher-order networks),

all PFDR < 0.01.

3. Graph Metrics: Similarities in small-worldness, modularity (pppgr < 0.05), and hub

distributions demonstrated conserved topological principles.

4. Lesion Simulations: Virtual lesioning in human connectomes replicated canine stroke

patterns with 78% prediction accuracy (pppr < 0.001).

5. Pharmacological Parallelism: NEH effects in canines mirrored known neuroprotec-

tive mechanisms in humans, lending translational credence.

6. Cross-Validation: Leave-one-out cross-validation maintained 85% accuracy in net-

work correspondence assignments, ensuring method reliability.

7. ICA Matching: Independent ICA component matching between species yielded a

mean spatial correlation of r = 0.69 (pppr < 0.0001).

These validations confirm that the mapping is biologically meaningful and methodologi-

cally sound, bolstering confidence in using canine models as translational platforms.
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Cross-Species Mapping Validation
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Figure 5.7:  Validation of cross-species mapping using multiple metrics. A. Spatial cor-
respondence showing Dice coefficients across primary and higher-order networks. B. Cor-
relation of functional fingerprints between species (r=0.81 for primary networks, r=0.63
for higher-order networks). C. Comparison of graph-theoretical metrics including small-
worldness (SW), modularity (Mod), and hub distribution (Hub). D. ICA component match-
ing matrix showing spatial correlations between species (mean r=0.69). All metrics demon-
strate strong cross-species correspondence and framework reliability.

5.5 Comparative Analysis of Stroke Effects

5.5.1  Similarities in Network Disruptions

Both species exhibited:

e Reduced connectivity in higher-order networks post-stroke (RSN3 in canines, DMN in

humans), with significant decreases (pppgr < 0.05).

e Relative preservation of primary sensory networks, indicating that early ischemic dam-

age spares primary sensory-processing areas.
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e Global decreases in FC strength, particularly in regions affected by the occluded artery.
e Increased hemisphere asymmetry, consistent with unilateral vascular compromise.

e Compensatory increases in contralesional or ipsilesional cerebellar connectivity, reflect-

ing early adaptive neural reorganization.

5.5.2  Differences in Recovery Trajectories

Differences included:

e Recovery Rate: Canines showed faster restoration in certain networks (e.g., RSN4

under NEH) than humans in analogous networks.

e Network Complexity: Humans exhibited more extensive network reorganization
over months, developing novel connectivity patterns indicative of higher cognitive plas-

ticity.

e Hemispheric Normalization: While both species showed normalization of asymme-

try, humans displayed a more gradual and extensive rebalancing.

e Cognitive Network Recovery: Humans, with more complex cognitive networks,
demonstrated variable trajectories and emergence of novel functional hubs, whereas

canines had more stable but less complex rearrangements.

e Motor Plasticity: Human sensorimotor networks underwent more pronounced long-
term plastic changes, possibly reflecting differences in cortical reorganization capabili-

ties.

5.5.8  Implications for Translational Research

These comparative insights inform future translational approaches:
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Acute Phase Modeling: The similarity in early network disruption patterns vali-

dates canine models for studying acute stroke pathophysiology.

Therapeutic Timing: Faster canine recovery suggests shorter therapeutic windows,

implying human trials may need adjusted timing parameters.

Network-specific Targets: Differential susceptibility of networks in canines and

humans calls for network-specific therapeutic approaches in clinical settings.

Biomarker Development: Conserved patterns (e.g., higher-order visual network
disruption in canines, DMN in humans) could serve as translational biomarkers for

stroke severity and response to interventions.

Extended Follow-ups: The extensive network reorganization in humans during sub-
acute and chronic phases highlights the importance of long-term studies to fully capture

plasticity and rehabilitation potentials.

Cognitive Assessments: Limited canine analogs for complex cognitive networks
emphasize complementing animal studies with cognitive assessments to better inform

human rehabilitation strategies.

Combination Therapies: Distinct network-specific effects of NEH and Sanguinate
suggest that combined therapies might leverage multiple protective mechanisms for

optimal outcomes.

Standardized Imaging Protocols: Ensuring consistent acquisition parameters and

analytical methods across species facilitates direct translational comparisons.

Evolutionary Considerations: Observed differences in frontal and DMN organiza-
tion highlight evolutionary divergences that must be acknowledged when translating

animal model findings to human conditions.
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5.6 Chapter Summary

This chapter has presented a quantitative and detailed overview of the results obtained
from applying our cross-species connectivity mapping framework to canine models of acute

ischemic stroke and human stroke patients. Key findings include:

e Canine Connectivity Changes: Significant reductions in higher-order visual net-
work connectivity post-occlusion, with certain networks like the parietal system show-

ing variable responses depending on therapeutic interventions.

e Therapeutic Efficacy in Canines: NEH and Sanguinate treatments exerted distinct
protective or restorative effects on functional networks, with NEH favoring higher-order

networks and Sanguinate offering more uniform protection.

e Human Stroke Profiles: Acute human stroke disrupted the DMN and decreased
global efficiency, with partial recovery over time and the emergence of novel connec-
tivity patterns in chronic phases. Connectivity metrics predicted clinical outcomes,

suggesting potential biomarkers.

e Cross-Species Correspondences: Core sensory and visual networks were well-
conserved across species, validating canine models for early stroke studies. Species-
specific differences in frontal complexity, language networks, and long-term reorgani-

zation underscore the need for careful translation.

e Translational Implications: The comparative analyses highlight strengths and limi-
tations of canine models, emphasize careful consideration of therapeutic windows, and
support the development of network-specific and possibly combination therapies for

human stroke rehabilitation.

Overall, the results underscore the value of cross-species approaches to understanding
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stroke-induced network alterations, guiding therapeutic strategies, and ultimately contribut-

ing to improved clinical outcomes in human stroke patients.
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Chapter 6 Predictive Modeling of

Human Stroke Outcomes

In this chapter, we present a quantitative and mathematically rigorous approach to devel-
oping predictive models that leverage preclinical findings from canine ischemic stroke mod-
els to inform potential human stroke outcomes. Building upon the cross-species mapping
framework and the results from previous chapters, we integrate connectivity-based features,
clinical and demographic variables, and multimodal imaging metrics into advanced machine
learning and deep learning models. Through transfer learning, domain adaptation, and
multi-task learning strategies, we aim to bridge the species gap and produce clinically ac-
tionable predictions of human stroke recovery trajectories and therapeutic responses. Our
methodological pipeline encompasses detailed feature selection, careful model construction,

extensive validation, and interpretability analyses.

6.1 Feature Selection and Engineering

6.1.1 Connectivity-based Features

We extracted comprehensive connectivity features derived from resting-state fMRI data in
both canines and humans (Figure 6.1), capturing both static and dynamic aspects of func-
tional connectivity (FC). Let G = (V, E) represent a brain network, where V' is the set of

nodes (ROIs) and F is the set of edges encoding connectivity weights.
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Global Network Measures

We computed:

o Global Efficiency E,;(G):

Eglob(G) = %Z ( 1 ! )

o \ =1 2 dij
where d;; is shortest path length. Higher Eg;,;,(G) indicates more integrated networks.

e Clustering Coefficient C"

2|E(T)]

1 .
C:NZC“ Wlthcl—m

1€V
where ['; are neighbors of node i, k; is node degree. High (' suggests more local

clustering.

e Small-worldness o:
_ C/ Crand
L / Lrand

comparing clustering C' and characteristic path length L to random graphs.

g

Node-level and Edge-level Metrics

We included:
e Degree Centrality: k; = Zj w;j, where wj; is edge weight.

e Betweenness Centrality BC;:

BC; = U;t (Z)
stii ot
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counting fraction of shortest paths passing through 7.

e Local Efficiency Ej,.(i):

1 1
B li)= — o
o) = [RIINT=1) 2, 4

evaluating how well neighbors of ¢ exchange information.

e Edge-wise Connectivity Strengths: Raw correlation coefficients r;; or partial cor-

relations between ROIs, thresholded or unthresholded.

Dynamic Connectivity Measures

We extracted temporal flexibility and integration metrics from sliding-window analyses. Let

X (t) be the FC matrix at time ¢:
e Flexibility F;: Fraction of time a node changes modular assignment.

e Integration /(t): At each window, we computed Eg,,(G¢) or network segregation

metrics, tracking temporal patterns.

Connectivity features were derived at pre-occlusion, post-occlusion, and post-treatment
epochs in canines and at acute, subacute, and chronic phases in humans, providing a time-

resolved feature set.
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Figure 6.1: Distributions of selected network metrics across species and conditions. Left
Column: Canine network metrics comparing pre-occlusion (blue) and post-occlusion (red)
states. Right Column: Corresponding human acute stroke metrics (green). Top Row:
Global efficiency distributions showing post-stroke reduction in network integration. Middle
Row: Clustering coefficient distributions demonstrating changes in local network organiza-
tion. Bottom Row: Degree distributions indicating alterations in node-wise connectivity
patterns. The shifts in these distributions quantify network-wide impacts of stroke, with
canine models showing similar patterns to human acute stroke, particularly in the reduction
of global efficiency and clustering post-occlusion.

6.1.2  Clinical and Demographic Variables (Human Only)

In humans, clinical and demographic features included:
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e Age (a), sex (s), and comorbidities (C).

Stroke severity (S) via NIHSS scores.

Time-to-treatment (Typset)-

Lesion volume (Vj,4i0n) and location (Ljeg;0n) extracted from structural MRI segmen-

tations.

These variables integrated into predictive models as scalar or categorical covariates (Fig-

ure 6.2).

6.1.3 Multimodal Imaging Features

We included diffusion tensor imaging (DTI) metrics:

e Fractional Anisotropy (F'A) and Mean Diffusivity (M D), computed voxelwise and

averaged over ROls.
Perfusion-weighted imaging (PWI) measures:
e Cerebral blood flow (CBF), cerebral blood volume (CBV'), mean transit time (MTT).
Structural MRI metrics:

e Gray matter volume (GMV) and cortical thickness (CT), providing morphological

context.

Each imaging metric was Z-score normalized for model training.
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Feature Correlations in Human Stroke Data

FC NIHSS Age CBF FA GMV CT
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Figure 6.2: Inter-feature correlations among connectivity, clinical, and structural /perfusion
metrics. The correlation matrix shows relationships between functional connectivity (FC),
clinical measures (NIHSS, Age), and multimodal imaging features (CBF, FA, GMV, CT).
Color intensity represents correlation strength, with darker red indicating stronger positive
correlations and lighter shades indicating weaker correlations. Notable relationships include
strong negative correlations between NIHSS and CBF (-0.72), and strong positive correla-
tions between GMV and CT (0.75). FC shows moderate positive correlations with most
imaging metrics but negative correlation with NIHSS, suggesting potential biomarker value.

6.2 Machine Learning Model Development

6.2.1 Supervised Learning Approaches

We evaluated multiple algorithms to handle regression (e.g., predicting continuous recovery

scores) and classification (e.g., good vs. poor outcome):

e Random Forests: Ensemble of decision trees. Let f(z) be the final prediction:



where h;, are individual trees.

e Support Vector Machines (SVM): For classification, we solve:
min l||w||2 + CZS-
w.b& 2 =

subject to y;(w-x; +b) > 1—-¢;, & > 0.

e Gradient Boosting Machines (GBMs): Iteratively fitting weak learners hy,(x) to

residuals:

fm(2) = fm—1(x) + vhm(x)
where v is the learning rate.

e Elastic Net Regression: Linear model:

min [y — XB3+ M8l + X2llB113

balancing L1 (sparsity) and L2 (ridge) regularization.
Models were trained on canine data (pre- and post-stroke) and hyperparameters opti-

mized via 5-fold cross-validation.

6.2.2 Deep Learning Architectures

Deep learning allows modeling complex nonlinearities (Figure 6.3):

e Convolutional Neural Networks (CNNs): Applied to connectivity matrices X €

RV*N | convolution filters extract local patterns. If WO denotes filters in layer [,

activations A = g(W 1 5 x=1) 4 p(D)),
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e Recurrent Neural Networks (RNNs): For dynamic FC sequences (X7, ..., Xp),
LSTMs or GRUs capture temporal dependencies. Hidden states hy = f(h;_1, X¢) can

model evolving connectivity over time.

e Graph Neural Networks (GNNs): Directly operate on graph structure. A GNN

layer:

gl = ¢ (AH(I—l)W(l)>
where A is adjacency matrix (possibly normalized) and H () are node embeddings.

Training used GPUs and stochastic gradient descent with Adam optimizer. Hyperpa-
rameters (learning rates, number of layers, embedding dimensions) were tuned via Bayesian

optimization.

GNN Architecture for Brain Networks

Input Graph

G |0 fowv s ) o
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s N

GNN Layer 2H®?) = (AHOW () [swoke Prediction}—

L J

A: Adjacency Matrix ~ H: Node Embeddings

W: Learnable Weights ¢: Activation Function

Figure 6.3: GNN layers propagating node embeddings based on connectivity to predict
stroke outcomes. The architecture processes the input brain network through multiple GNN
layers, where each layer updates node representations by aggregating information from con-
nected nodes. Initial node features are transformed through learnable weight matrices and
nonlinear activations, ultimately producing node-level features that inform stroke prediction.
The model learns to capture both local and global network properties relevant to stroke out-
comes.
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6.2.3 FEnsemble Methods

To improve robustness and generalization (Figure 6.4):

e Stacking: If fq,..., fx are base models, we fit a meta-learner g(z1, ..., zx) where zj, =

fx(x). Final prediction: § = g(f1(x), ..., fr(z)).

e Bagging: Bootstrap samples to reduce variance. Mean prediction over multiple boot-

strap samples stabilizes estimates.

e Boosting: Sequentially add models to reduce errors of previous ones, as in GBM or

XGBoost.
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Figure 6.4: Combining multiple base learners (SVM, RF, GNN) with ensemble methods
(Stacking, Bagging, Boosting) for improved predictive performance. Base learners (shown
in blue) include Support Vector Machines (SVM), Random Forests (RF), and Graph Neural
Networks (GNN). These are combined through various ensemble strategies (shown in green)
to create more robust and accurate predictions. Arrows indicate the flow of predictions
from base learners to ensemble methods, where each ensemble technique combines the base
predictions in different ways: stacking learns optimal combinations, bagging reduces variance
through averaging, and boosting sequentially improves on previous models’ errors.

6.3 Cross-Species Prediction Framework
6.3.1 Transfer Learning Strategies
Given a source domain (canine data) and a target domain (human data), we implemented:

e Feature-based Transfer: Using manifold alignment or optimal transport meth-

ods described in prior chapters, we transform canine feature space X (dog) to hu-

121
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on ( Y

e Parameter Transfer: Initialize human model weights with those learned from ca-

nines. For example, GNN parameters Wé?g serve as initialization for Wf(LQman, followed

by fine-tuning.
e Multi-task Learning: Solve canine prediction f;,,(7) and human prediction f,qn ()

jointly with a shared representation layer. Objective:

mé)in Ldog (fdog (wdog)v ydog) + aLpyman (Fruman (Thuman)s Yhuman)

balancing tasks with a.

6.3.2 Domain Adaptation Techniques

To handle distribution shifts between species:

e Adversarial Domain Adaptation: Train a domain discriminator D to distinguish
canine vs. human features. Simultaneously optimize feature extractor F' to minimize
D’s accuracy:

m}in mBLX Exedog log D(F(x))] + Ezchumanllog(l — D(F(x)))].

e CORAL (Correlation Alignment): Match second-order statistics of source and target

features:

HOOU(Fdog) - OOU(Fhuman)H%7
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e MMD (Maximum Mean Discrepancy): Minimize:

1 0 1 uman
MMD? = || Zqﬁ(xf 9y — EZsb(x? )12

J

in a RKHS.

6.3.3 Multi-task Learning Approaches

We explored multi-task learning to predict multiple clinical endpoints (e.g., NIHSS at dis-

charge and mRS at 3 months; Figure 6.5):

e Hard Parameter Sharing: A single encoder network feeds multiple task-specific

output layers.

e Soft Parameter Sharing: Regularize differences between task-specific parameter

sets.

e Hierarchical Multi-task: Model tasks arranged in a hierarchy, optimizing upper-

level tasks to guide lower-level predictions.
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Multi-task Learning Architecture
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Figure 6.5: Domain adaptation and multi-task learning architecture for cross-species stroke
outcome prediction. The framework combines canine and human data through a shared
encoder network, while maintaining task-specific output layers for different clinical endpoints
(NIHSS, mRS, and recovery time). Domain adaptation techniques align the feature spaces
between species, while parameter sharing (both hard and soft) between task-specific layers
enables knowledge transfer across different outcome measures. This architecture facilitates
simultaneous prediction of multiple clinical endpoints while leveraging cross-species data
integration.

6.4 Model Evaluation and Validation

6.4.1 Performance Metrics

Depending on the prediction goal (binary classification of good outcome vs. poor outcome,

regression of continuous recovery scores), we used:

e Classification: Accuracy (ACC), Fl-score (F'1), Area Under ROC Curve (AUC).

e Regression: Mean Squared Error (MSFE) = %Zz(yz — 4;)%, R? (coefficient of deter-
mination), and Concordance Correlation Coefficient (C'CC).
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e Ranking: Spearman’s rank correlation (p), Normalized Discounted Cumulative Gain

(NDCGQ) for prioritized outcome lists.

6.4.2 Cross-Validation Strategies
To ensure robust generalization:
e Stratified k-fold: Ensuring balanced class distributions in each fold.
e Leave-one-out: Useful when sample size is limited.

e Nested Cross-Validation: Inner loop for hyperparameter tuning, outer loop for

performance estimation.

6.4.3 FEaxternal Dataset Validation

We tested models on independent multi-center human stroke cohorts (e.g., different scanner
sites, patient populations) to assess generalizability. Comparison with existing clinical pre-
dictors (e.g., conventional regression models or known stroke scales) benchmarks the added

value of our approach.
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Model Performance Evaluation
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Figure 6.6: ROC curves and calibration plots demonstrating model performance. A. Re-
ceiver Operating Characteristic (ROC) curves showing classification performance on internal
test sets (blue) and external validation cohorts (red). The area under the curve (AUC) in-
dicates strong discriminative ability across both datasets. B. Calibration plots comparing
predicted probabilities with observed frequencies, demonstrating good calibration of prob-
ability estimates. Dashed diagonal lines represent perfect calibration. Error bars indicate
95% confidence intervals for probability estimates. The model maintains robust performance
across both internal and external validation, supporting its generalizability to different clin-
ical settings.

6.5 Predictive Insights and Clinical Relevance

6.5.1 Key Predictors of Stroke Outcomes

Feature importance analyses (e.g., SHAP values for tree-based models) revealed:
e Connectivity alterations in DMN and sensorimotor networks as top predictors.

e Dynamic FC measures outperform static metrics, highlighting temporal network re-

configuration as a critical indicator of recovery potential.
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e Integrating imaging (DTI, PWI) and clinical variables (NIHSS, lesion metrics) improves
prediction significantly (t-test comparing models with/without imaging features, p <

0.001).

6.5.2 Therapeutic Response Prediction

Our models can predict likelihood of positive response to NEH and Sanguinate (or analogous

treatments in humans):

e Cross-species adapted models achieved AUCs of 0.85-0.90 in identifying patients who
would benefit from NEH-like interventions (based on canine-human analogues, pppgr <

0.01).

e Estimation of side-effect risks and long-term functional gains further refined treatment

selection.

6.5.3 Personalized Treatment Recommendations

By combining predictive scores with clinical decision thresholds:

e Risk stratification frameworks allocate patients into low-, medium-, or high-risk cate-

gories based on predicted outcomes.

e Personalized therapeutic suggestions: Given connectivity profiles and lesion character-
istics, our model might recommend NEH-like treatments for patients with pronounced
higher-order network disruptions or Sanguinate-like interventions for those needing

global metabolic support.

e Recovery trajectory estimation: Predicting the expected time course of functional

improvement ((t) over weeks to months) aids rehabilitation planning.
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Feature Importance Analysis
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Figure 6.7:  Feature importance visualization highlighting the contribution of dynamic
connectivity and lesion metrics to outcome predictions. SHAP values indicate the magnitude
and direction of each feature’s impact on model predictions. Dynamic functional connectivity
between RSN3-RSN2 and lesion volume emerge as the strongest predictors, followed by
global network efficiency measures. Color gradient represents feature value (red=high to
blue=low). Multiple dots per feature represent the distribution of SHAP values across the
dataset, showing how feature importance varies across different patients.

6.6 Chapter Summary

In this chapter, we outlined a rigorous, quantitative approach to predictive modeling for
human stroke outcomes, grounded in the cross-species insights gained from canine models.

Key advancements include:

e Comprehensive feature engineering: Integrating network-level, node-level, and tempo-

ral connectivity metrics with clinical, structural, and perfusion features.
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e Deployment of advanced ML and DL architectures: Leveraging ensembles, GNNs,
CNNs, RNNs, and transfer learning to handle complexity and domain shifts between

canines and humans.

e Domain adaptation and multi-task learning: Ensuring that knowledge learned from
canine datasets generalizes to human populations, allowing the prediction of multiple

clinical endpoints concurrently.

e Robust evaluation and external validation: Demonstrating predictive performance with

diverse metrics, cross-validation strategies, and independent test cohorts.

e Clinical interpretability: Identifying key features and potential therapeutic implica-
tions, laying groundwork for personalized medicine approaches that optimize treatment

based on predicted recovery trajectories.

This predictive modeling framework stands as a crucial translational link, connecting pre-
clinical animal findings to improved clinical decision-making tools, ultimately guiding per-

sonalized stroke therapies and enhancing patient outcomes.
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Chapter 7 Conclusions and Future

Directions

In this final chapter, we integrate the key findings of our research, discuss the implications
for translational stroke research, acknowledge the limitations of our current approach, and
propose directions for future work. Throughout this chapter, we have chosen to emphasize
certain concepts by using boldface text, reflecting their central importance to our con-
clusions and vision moving forward. Our overall aim has been to develop and validate a
cross-species functional connectivity framework that bridges preclinical canine models and
human stroke patients, ultimately advancing our understanding of stroke pathophysiology

and improving therapeutic strategies.

7.1 Summary of Key Findings

Our research has resulted in a number of significant outcomes. First and foremost, we success-
fully developed and validated a cross-species functional connectivity mapping frame-
work designed to translate findings between canine models of acute ischemic stroke and
human stroke patients. This framework leveraged advanced computational tools—such
as nonlinear registration, manifold alignment, and domain adaptation techniques—to iden-
tify and align homologous resting-state networks (RSNs) across species. Notably, we
were able to demonstrate significant correspondences in key networks, including primary
visual, sensorimotor, and parietal systems, where spatial correlations exceeded r > 0.7 and
graph-theoretic measures showed striking similarities.

Crucially, this mapping framework allowed us to quantitatively compare functional
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connectivity (FC) patterns in canines and humans, thereby enhancing the translational
value of preclinical models. By applying it to our data, we observed that higher-order
visual (RSN3) and parietal (RSN4) networks were particularly vulnerable to post-stroke
disruptions in canine MCAQO models. Specific treatments, such as the NEH and Sanguinate
interventions, showed distinct and measurable effects on preserving or enhancing FC in these
networks, with NEH notably maintaining up to 85% of pre-occlusion connectivity in certain
domains.

Building on these findings, we integrated machine learning and deep learning tech-
niques to develop predictive models that bridge the gap between animal data and human out-
comes. By employing transfer learning and domain adaptation approaches, we achieved im-
proved predictive accuracy when estimating therapeutic responses and longer-term stroke re-
covery trajectories. Our analysis identified default mode network connectivity changes,
dynamic connectivity measures, and a combination of imaging and clinical variables as
potent predictors of human patient outcomes. These models demonstrated potential utility
in guiding personalized treatment recommendations, effectively setting the stage for a

precision medicine paradigm in stroke care.

7.2 Implications for Translational Stroke Research

The methodological and conceptual advances presented in this thesis have direct implica-
tions for translational stroke research. By providing a rigorous, quantifiable means of
comparing FC patterns across species, our cross-species framework enhances the relevance of
canine stroke models, enabling more accurate extrapolation of preclinical results to human
clinical scenarios. This quantitative grounding instills greater confidence that therapeutic
successes observed in canines—particularly those involving specific network targets—can
indeed inform human treatment strategies.

Beyond its immediate translational value, our research deepens our understanding of
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stroke pathophysiology at the network level. Identifying network-specific vulnerabili-
ties and tracking their evolution over time underscores the complexity and heterogeneity
of stroke-induced brain changes. Recognizing that cognitive and higher-order integrative
circuits are significantly affected by ischemia highlights the importance of developing and
evaluating interventions that address not only motor deficits but also cognitive and atten-
tional dysfunction. Such insights are invaluable when designing clinical trials, as they point
to the need for more comprehensive functional assessments that go beyond traditional motor
scales.

Moreover, the predictive modeling framework we established shows that advanced compu-
tational techniques can inform novel therapeutic targets and strategies. By anticipat-
ing outcomes and identifying which patients may benefit most from particular interventions,
clinicians could fine-tune treatment regimens, optimize rehabilitation protocols, and ulti-
mately improve patient quality of life. This contributes to a future where treatments are

tailored to each individual’s unique connectivity fingerprint and clinical profile.

7.3 Limitations and Challenges

Despite these achievements, our work inevitably faces certain limitations and challenges.
From a technical perspective, differences in spatial resolution, acquisition protocols, and
anatomical alignment between canine and human imaging data introduce uncertainties.
Although we employed robust nonlinear registration methods and domain adaptation strate-
gies, residual inconsistencies may affect the granularity of cross-species matches. Larger,
more diverse datasets—collected using standardized imaging protocols—would bolster the
generalizability and reliability of our findings.

Biologically, the evolutionary divergences between canines and humans remain non-
trivial. While we identified homologous networks and functional parallels, it is crucial to

recognize that certain cognitive domains are expanded or uniquely adapted in the human
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brain. Additionally, real-world human stroke patients often present with heterogeneous
etiologies and comorbidities, posing a challenge when directly applying insights gleaned
from controlled preclinical models. Domain adaptation methods and larger, multicenter
clinical validation studies are required to fully bridge these gaps.

The pathway from preclinical discovery to clinical practice is also constrained by reg-
ulatory and ethical considerations. Novel therapies inspired by our findings will need
to undergo rigorous safety and efficacy trials before entering widespread clinical use. The
complexity of network-based interventions, combined with the need for large-scale, multisite
evaluations, means that the road to clinical translation, although clarified by our work, is

still long and fraught with logistical and ethical hurdles.

7.4 Future Research Directions

Moving forward, several avenues offer promising opportunities to extend and refine our ap-
proach. One key direction is the refinement of cross-species mapping techniques, po-
tentially incorporating more advanced graph neural networks, attention-based mechanisms,
or contrastive learning frameworks. Such methods could capture more subtle interspecies
differences and improve the fidelity of alignments.

From an imaging standpoint, there is substantial merit in pursuing integration of
multi-modal imaging data. Combining resting-state fMRI with structural connec-
tivity measures from diffusion tensor imaging, as well as perfusion imaging indices like
cerebral blood flow or volume, can yield a richer and more comprehensive understanding
of the neurovascular coupling and metabolic underpinnings of stroke-induced FC changes.
Similarly, exploring molecular or metabolic imaging methods (e.g., PET) could link network
disruptions to underlying biochemical processes, guiding more targeted pharmacological in-
terventions.

The methodological and conceptual frameworks developed here also hold potential for
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application in other neurological disorders, such as traumatic brain injury, neurodegen-
erative conditions, or disorders of consciousness. By adapting our cross-species framework
and predictive models to these contexts, we may uncover universal organizing principles of
brain networks, improve disease monitoring, and identify new therapeutic strategies. This
broader applicability would not only advance our fundamental understanding of the brain

but also accelerate the pace of translational research across a spectrum of clinical challenges.

7.5 Concluding Remarks

In conclusion, this thesis represents a significant advancement in bridging the gap be-
tween animal models and human clinical research in the domain of stroke. By establishing
a robust cross-species FC mapping framework, characterizing stroke-induced network alter-
ations, and demonstrating how predictive modeling can guide treatment selection, we have
laid the groundwork for a more integrative and data-driven approach to stroke manage-
ment. Our findings point towards a future of precision neurology, where personalized
interventions are informed by detailed connectivity profiles and computational predictions.
The potential impact of this work on stroke management is profound. By enhancing
patient stratification, refining therapeutic targets, and improving outcome predictions, we
move closer to a scenario in which stroke interventions are tailored to each patient’s unique
network architecture. Such advances will likely improve recovery outcomes, optimize resource
allocation, and possibly reduce the time needed to identify truly effective treatments.
Finally, our vision for future translational neuroscience extends well beyond stroke.
The conceptual frameworks, analytical pipelines, and computational tools developed here
can catalyze a new era of integrative, cross-species research. This, in turn, can foster more
rapid discovery, more effective interventions, and a deeper understanding of the neural mech-
anisms underlying complex brain disorders. While challenges remain, our progress thus far is

a testament to what can be achieved with interdisciplinary collaboration, rigorous method-
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ology, and a commitment to translating scientific insights into clinical benefits for patients

worldwide.
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Appendices

A. Full Derivation of Resting-State BOLD Signal in an Acute

Ischemic Stroke Model

Here we provide a comprehensive derivation of the resting-state Blood Oxygen Level Depen-
dent (BOLD) signal in the context of an acute ischemic stroke model, specifically focusing
on a middle cerebral artery occlusion (MCAOQO) event. We will derive the BOLD signal from
first principles, incorporating the approach of Gagnon et al [51] and extending it to account

for collateral circulation.

A.1  Fundamentals of BOLD Contrast

The BOLD signal is based on the magnetic properties of hemoglobin in different oxygenation
states. The BOLD signal (S) can be expressed as:
S = Syexp(-TE/Ty) (7.1)

where Sy is the signal intensity that would be obtained at TE = 0, TE is the echo time,

and T. 2* is the effective transverse relaxation time.

A.2 Modeling Ty in the Contest of Stroke

In a stroke event, T3 is affected by changes in deoxyhemoglobin concentration. Following

Gagnon et al., we model T3 as:
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1 1
T_; = m + R (7.2)

where T3 is the baseline Ty and R’2 is the reversible relaxation rate due to magnetic

field inhomogeneities.

A.8  Quantifying R, in Stroke Conditions

In the context of stroke, R’2 is primarily influenced by the concentration of deoxyhemoglobin

(|dHb]). Following Yablonskiy and Haacke, as used by Gagnon et al., we express R as:

Rh =K -V -[dHb]’ (7.3)

where K is a constant depending on vessel geometry and magnetic field strength, V is
the venous blood volume fraction, and [ is a parameter relating to vessel size (8 =~ 1 for

larger vessels and [ &~ 2 for capillaries).

A.4  Incorporating Cerebral Blood Volume and Oxygenation Changes

In an MCAO event, both cerebral blood volume (CBV) and oxygenation levels change. We

model these changes as:

V =1p(1+AV) (7.4)

[dHb] = [dHb]y(1 — V) (7.5)

where V) is the baseline blood volume, AV is the fractional change in blood volume,
[dHb]g is the baseline deoxyhemoglobin concentration, and Y is the blood oxygenation frac-

tion.
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A.5 BOLD Signal Change in Stroke

Combining the above equations, we can express the BOLD signal change (AS/Sp) as:

g_f — exp(-TE - K - Vo - [dHb] - [(1 + AV)(1 — ¥)P) -1 (7.6)

A.6  Incorporating Cerebral Blood Flow Changes

In MCAO, cerebral blood flow (CBF) is significantly altered. We relate CBF changes to

oxygenation changes using the Fick principle:

CMROg = CBF - ([Hb| - Yo — [Hb] - Yy) (7.7)

where CMROg is the cerebral metabolic rate of oxygen, [Hb| is the hemoglobin concen-

tration, and Y, and Y, are the arterial and venous oxygen saturation, respectively.

A.7 Modeling BOLD Signal Changes in MCAQO

In MCAOQO, we consider the following factors:
1. Reduced CBF in the affected region
2. Potential changes in CMRO9
3. Alterations in CBV due to autoregulation and collateral circulation

We model these changes as:

CBF = CBF(1 + ACBF) (7.8)

CMRO2 = CMROg (1 + ACMROy) (7.9)
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where CBF( and CMROg  are baseline values, and ACBF and ACMRO are fractional

changes.

A.8 Incorporating Collateral Circulation

To account for the effects of collateral circulation, we introduce a collateral flow index (CFI):

CBF
CFI = CBFcollatfzral (7‘10)
baseline

where CBF gjateral 1 the blood flow through collateral vessels and CBFy),qeline 1S the
pre-stroke baseline flow.
Following Christoforidis’ [9, 10] definition, we categorize individuals based on their col-

lateral score:

Good, if score > 8
Collateral Score = (7.11)

Poor, if score < 8

We then relate the CFI to the collateral score:

1.2, if Collateral Score is Good
CFLgjustea = CFI X (7.12)

0.8, if Collateral Score is Poor

The adjustment factors of 1.2 for good collaterals and 0.8 for poor collaterals were chosen
to reflect the relative impact of collateral quality on cerebral blood flow. These values
represent a 20% increase or decrease in the CFI, respectively, which aligns with observed
differences in perfusion between patients with good versus poor collaterals in clinical studies.
This adjustment aims to account for the significant influence of collateral circulation on tissue
perfusion and subsequent functional outcomes in stroke. These factors can be further refined

based on experimental data to more precisely quantify the relationship between collateral
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score and effective blood flow.

The effective CBF in the ischemic region can then be modeled as:

CBF effective = CBFg(1 + ACBF) + CFIadjusted - CBFy (7.13)

A.9 BOLD Signal in MCAQO: Final Formulation

Incorporating the collateral circulation effect, our final BOLD signal change model in MCAO

becomes:

25 p(-TE-K -Vp- [dHb]Y - [(1+ AV)(1—

S0
CMROg (1 + ACMRO2) )]ﬂ) )
CBF effective - [Hb] Yq

(7.14)

This equation encapsulates the complex interplay between blood flow, volume, oxygena-
tion changes, and collateral circulation in the context of MCAQ, providing a comprehensive

model for resting-state BOLD signal changes in acute ischemic stroke.

A.10 Considerations for NEH and Sanguinate Treatments

When considering treatments like Norepinephrine and Hydralazine (NEH) or Sanguinate,

we need to modify our model to account for their specific effects:

NEH Treatment

NEH acts as both a vasopressor and vasodilator, potentially affecting both CBF and CBV.

We model this as:

ACBFNEH = ACBF + ONEH (7.15)
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AVNEHR = AV + ONEH (7.16)

where angpg and SNy are treatment-specific parameters representing the additional

changes in CBF and CBV due to NEH.

Sanguinate Treatment

Sanguinate primarily acts as an oxygen carrier, potentially affecting the oxygenation levels

without directly impacting CBF or CBV. We model this as:

YSanguinate =Y+ YSanguinate (7'17)

where Yganguinate represents the additional oxygenation provided by Sanguinate.

A.11  Final BOLD Signal Model for Treatment Comparison

Incorporating these treatment-specific effects and the collateral circulation factor, our final

BOLD signal model for comparing NEH and Sanguinate treatments in MCAQO becomes:

AS
S = OPCTE K V- [dHD]) - [(1+ AV + Brveatment)
CMRO9 (1 + ACMROo) 3 (7.18)

(CBF effective T O‘Treatment) : [Hb] ) (Ya + 7Treatment)

(1- )—1

where aTyeatments STreatments @0 YTreatment are set to their respective values for NEH
or Sanguinate treatments, or to zero for the control condition.

This model allows for a detailed analysis of how different treatments affect the BOLD
signal in the context of acute ischemic stroke, accounting for variations in collateral circula-

tion. It provides a theoretical foundation for interpreting the experimental results observed
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in resting-state fMRI studies of stroke and its treatments, particularly in differentiating

outcomes between individuals with good versus poor collateral circulation.
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C. Code Availability

All code and data is publicly available either by emailing cswarioba@uchicago.edu or visiting

https://github.com /tjcarroll-lab /rs-fMRI.
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